对于一个学习器,我们需要对泛化能力进行评估,也就是对模型在测试集上效果的评估。
我们首先给定一个样本集,性能评估也就是比较预测结果与真实结果之间的差距。
回归任务中,最常用的性能度量是“均方误差”(mean squared error):
本文主要讨论分类任务的性能度量。
1.错误率与精度
错误率同上,精度,也可以成为”正确率”
2.查全率,查准率,F1
已经有错误率或正确率来衡量性能,为什么还要有查全率、查准率?
正确率确实是一个很好很直观的评价指标,但是有时候正确率高并不能代表一个算法就好。比如某个地区某天地震的预测,假设我们有一堆的特征作为地震分类的属性,类别只有两个:0:不发生地震、1:发生地震。一个不加思考的分类器,对每一个测试用例都将类别划分为0,那那么它就可能达到99%的正确率,但真的地震来临时,这个分类器毫无察觉,这个分类带来的损失是巨大的。为什么99%的正确率的分类器却不是我们想要的,因为这里数据分布不均衡,类别1的数据太少,完全错分类别1依然可以达到很高的正确率却忽视了我们关注的东西。
未完待续
网友评论