美文网首页
5002 assignment1

5002 assignment1

作者: Didex | 来源:发表于2017-10-05 02:12 被阅读0次

2.1 Wavelet Transform

Question 1

step1: Calculate the average of input samples

step2: Calculate the difference of input samples

step3: Regard averages as input sequence. Repeat step1 and step2 until only one output average.

Quention 2

Original Signal 1 4 2 3 -2 -1 2 1
1.Iteration 3.53 3.53 -2.12 2.12 -2.12 -0.71 -0.71 0.71
2.Iteration 5.00 0.00 0.00 -3.00
3.Iteration 3.54 3.54
Haar wavelet transformation 3.54 3.54 0.00 -3.00 -2.12 -0.71 -0.71 0.71

2.2 Principal Components Analysis

import numpy as np

dimension = 3
data_num = 7
data = [[-1, -2, -3, 1, 2, 3, 1], [-1, -1, -2, 1, 1, 2, 2],
        [1, 4, -2, 1, 2, 1, 4]]

data_mean = [np.mean(data[i]) for i in range(dimension)]

# normalize data by average
for i in range(0, dimension):
    for j in range(0, len(data[0])):
        data[i][j] -= data_mean[i]

# calculate covariance matrix according to definition
cov = []
for i in range(dimension):
    for j in range(dimension):
        sumOfRowMulti = 0
        for k in range(0, data_num):
            sumOfRowMulti += data[i][k] * data[j][k]
        cov.append(sumOfRowMulti / (data_num - 1))

cov_matrix = np.asarray(cov).reshape(dimension, dimension)
print 'covariance matrix is:'
print cov_matrix

# calculate eigen value and eigen vector using numpy function
eig_val, eig_vec = np.linalg.eig(cov_matrix)

for i in range(dimension):
    print 'eigen value', i, eig_val[
        i], ' corresponding eigen vector:', eig_vec[:, i]

# sort eigen value in descending order
eig_val_sorted = np.sort(eig_val)[::-1]

# calcuate propotion
# propotion=sum of eigen value of first k components/sum of all n eigen values
propotion = (eig_val_sorted[0] + eig_val_sorted[1]) / np.sum(eig_val_sorted)

print 'proportion of total population variance explained by the first two components: %.4f' % propotion

The result is:

image.png

3 Pattern Discovery

Question 1

Step 1: Discretization

Web page

  1. Sorted data for web pages : 7,9,9,11,13,14,18,35,36,45
  2. Partition into 4 equal-frequency (equal-depth) bins:
  • web1: 7,9,9
  • web2: 11,13
  • web3: 14,18,35
  • web4: 36,45

Session length

  1. Find the max and min value of session length: 267,2017
  2. Calculate the width of intervals: width = ( 2017 – 267 )/ 3≈583.4
  3. Partition into 3 equal-frequency (equal-width) bins:
  • len1 (267~850.4): 267,598,672
  • len2 (850.3~1433.8): 898,998,1213,1345
  • len3(1433.8~2017.2): 1543,1702,2017

Transactions table after discretization

Session ID Country Session Length Web Pages Buy
1 NA len2 web1 no
2 AS len3 web2 yes
3 EU len1 web3 yes
4 EU len2 web4 no
5 NA len1 web1 no
6 AS len2 web3 yes
7 AS len3 web3 yes
8 AS len1 web1 no
9 NA len3 web2 no
10 EU len2 web4 yes

Step 2: Apriori algorithm

1st scan

generate length 1 candidate itemsets

itemset sup
NA 0.3
AS 0.4
EU 0.3
len1 0.3
len2 0.4
len3 0.3
web1 0.3
web2 0.2
web3 0.3
web4 0.2
yes 0.5
no 0.5

prune infrequent itemsets

itemset sup
NA 0.3
AS 0.4
EU 0.3
len1 0.3
len2 0.4
len3 0.3
web1 0.3
web3 0.3
yes 0.5
no 0.5

2nd scan

generate length 2 candidate itemsets

itemset sup itemset sup
NA,len1 0.1 EU,yes 0.2
NA,len2 0.1 EU,no 0.1
NA,len3 0.1 len1,web1 0.2
AS,len1 0.1 len2,web1 0.1
AS,len2 0.1 len3,web1 0
AS,len3 0.2 len1,web3 0.1
EU,len1 0.1 len2,web3 0.1
EU,len2 0.2 len3,web3 0.1
EU,len3 0 len1,yes 0.1
NA,web1 0.2 len2,yes 0.2
NA,web3 0 len3,yes 0.2
AS,web1 0.1 len1,no 0.2
AS,web3 0.2 len2,no 0.2
EU,web1 0 len3,no 0.1
EU,web3 0.1 web1,yes 0
NA,yes 0 web1,no 0.3
NA,no 0.3 web3,yes 0.3
AS,yes 0.3 web3,no 0
AS,no 0.1

prune infrequent itemsets

itemset sup
NA,no 0.3
AS,yes 0.3
web1,no 0.3
web3,yes 0.3

3rd scan

generate length 3 candidate itemsets
no length 3 candidate

Step 3: Get frequent itemsets

{web3} (support = 0.3)
{web1} (support = 0.3)
{len3} (support = 0.3)
{len1} (support = 0.3)
{NA} (support = 0.3)
{EU} (support = 0.3)
{len2} (support = 0.4)
{AS} (support = 0.4)
{yes} (support = 0.5)
{no} (support = 0.5)
{web3,yes} (support = 0.3)
{web1,no} (support = 0.3)
{NA,no} (support = 0.3)
{AS,yes} (support = 0.3)

Question 2

Step 1: Discretization

same as question question 1

Step 2: Deduce the ordered frequent items

item sup
no 0.5
yes 0.5
AS 0.4
len2 0.4
EU 0.3
NA 0.3
len1 0.3
len3 0.3
web1 0.3
web3 0.3
ID Frequent Items
1 no,len2,NA,web1
2 yes,AS,len3
3 yes,EU,len1,web3
4 no,len2,EU
5 no,NA,len1,web1
6 yes,AS,len2,web3
7 yes,AS,len3,web3
8 no,AS,len1,web1
9 no,NA,len3
10 yes,len2,EU

Step 3: Construct FP tree

FP-tree

Step 4: construct conditional FP-tree for each item

Cond. FP-tree on "web3"

{web3} (support = 0.3)


web3

Cond. FP-tree on "web1"

{web1} (support = 0.3)


web1

Cond. FP-tree on "len3"

{len3} (support = 0.3)


len3

Cond. FP-tree on "len1"

{len1} (support = 0.3)


len1

Cond. FP-tree on "NA"

{NA} (support = 0.3)


NA

Cond. FP-tree on "EU"

{EU} (support = 0.3)


EU

Cond. FP-tree on "len2"

{len2} (support = 0.4)


len2

Cond. FP-tree on "AS"

{AS} (support = 0.4)


AS

Cond. FP-tree on "yes"

{yes} (support = 0.5)


yes

Cond. FP-tree on "no"

{no} (support = 0.5)


no

Step 5: Determine frequent patterns

{web3} (support = 0.3)
{web3,yes} (support = 0.3)
{web1} (support = 0.3)
{web1,no} (support = 0.3)
{len3} (support = 0.3)
{len1} (support = 0.3)
{NA} (support = 0.3)
{NA,no} (support = 0.3)
{EU} (support = 0.3)
{len2} (support = 0.4)
{AS} (support = 0.4)
{AS,yes} (support = 0.3)
{yes} (support = 0.5)
{no} (support = 0.5)

Question 3

closed frequent patterns

{web3,yes}
{web1,no}
{len3}
{len1}
{NA,no}
{EU}
{len2}
{AS}
{AS,yes}
{yes}
{no}

maximal frequent patterns

{web3,yes}
{web1,no}
{len3}
{len1}
{NA,no}
{EU}
{len2}
{AS,yes}

相关文章

网友评论

      本文标题:5002 assignment1

      本文链接:https://www.haomeiwen.com/subject/yzdhyxtx.html