前言
网络模块在开发中很常见了吧,也可以说是很重要了吧,所以梳理梳理,做做总结 、产出以及记录。
总的来说,本文基于OkHttp4.5.0,Kotlin版本,做了对OkHttp的基本请求、整体流程、同/异步请求、责任链调度以及CacheInterceptor的分析。
Http
网络的底层,万变不离其底层,这部分还是很重要的,以下两篇都写得非常nice
面试带你飞:这是一份全面的 计算机网络基础 总结攻略
TCP协议灵魂之问,巩固你的网路底层基础
OkHttp
How 基本请求
fun load() {
//1.创建请求(包含url,method,headers,body)
val request = Request
.Builder()
.url("")
.build()
//2.创建OkHttpClient (包含分发器、拦截器、DNS等)
val okHttpClient = OkHttpClient.Builder().build()
//3.创建Call(用于调用请求)
val newCall = okHttpClient.newCall(request)
//4.通过异步请求数据
newCall.enqueue(object :Callback{
override fun onFailure(call: Call, e: IOException) {}
override fun onResponse(call: Call, response: Response) {}
})
//4.通过同步请求数据
val response = newCall.execute()
}
- 流程图
前面就是基于构造者的创建(主要是量太大,不想占篇幅所以就不展示出来了)
关键(并不)处在于RealCall的请求
- 1.异步请求 RealCall#enqueue(responseCallback: Callback)
//RealCall#enqueue(responseCallback: Callback)
override fun enqueue(responseCallback: Callback) {
synchronized(this) {
//检查这个call是否已经执行过了,每 call只能被执行一次
check(!executed) { "Already Executed" }
executed = true
}
//Call被调用时调用,调用了EventListener#callStart()、扩展此类可以监视应用程序的HTTP调用的数量,大小和持续时间
callStart()
//1.这里创建了AsyncCall实际是个Runnable后面再提(标记为3)
client.dispatcher.enqueue(AsyncCall(responseCallback))
}
//1.Dispatcher#enqueue(call: AsyncCall)
internal fun enqueue(call: AsyncCall) {
synchronized(this) {
//添加到异步调用的队列
readyAsyncCalls.add(call)
if (!call.call.forWebSocket) {
val existingCall = findExistingCallWithHost(call.host)
if (existingCall != null) call.reuseCallsPerHostFrom(existingCall)
}
}
//2
promoteAndExecute()
}
//2.Dispatcher#promoteAndExecute()
//主要是将[readyAsyncCalls]过渡到[runningAsyncCalls]
private fun promoteAndExecute(): Boolean {
this.assertThreadDoesntHoldLock()
val executableCalls = mutableListOf<AsyncCall>()
val isRunning: Boolean
synchronized(this) {
val i = readyAsyncCalls.iterator()
while (i.hasNext()) {
val asyncCall = i.next()
if (runningAsyncCalls.size >= this.maxRequests) break // 最大容量. 64
if (asyncCall.callsPerHost.get() >= this.maxRequestsPerHost) continue // 最大主机容量. 5
i.remove()
asyncCall.callsPerHost.incrementAndGet()
//异步请求各自添加到异步调用队列和集合中
executableCalls.add(asyncCall)
runningAsyncCalls.add(asyncCall)
}
//同步队列和异步队列中超过一个 代表正在运行
isRunning = runningCallsCount() > 0
}
for (i in 0 until executableCalls.size) {
val asyncCall = executableCalls[i]
//3.
asyncCall.executeOn(executorService)
}
return isRunning
}
//3.RealCall.kt中的内部类
internal inner class AsyncCall(
private val responseCallback: Callback
) : Runnable {
fun executeOn(executorService: ExecutorService) {
...
//有点长 直接说重点了
//放到线程池中 执行这个Runnable
executorService.execute(this)
...
override fun run() {
threadName("OkHttp ${redactedUrl()}") {
...
try {
//兜兜转转 终于调用这个关键方法了
val response = getResponseWithInterceptorChain()
signalledCallback = true
//接口回调数据
responseCallback.onResponse(this@RealCall, response)
} catch (e: IOException) {
if (signalledCallback) {
Platform.get().log("Callback failure for ${toLoggableString()}", Platform.INFO, e)
} else {
responseCallback.onFailure(this@RealCall, e)
}
} catch (t: Throwable) {
cancel()
if (!signalledCallback) {
val canceledException = IOException("canceled due to $t")
canceledException.addSuppressed(t)
responseCallback.onFailure(this@RealCall, canceledException)
}
throw t
} finally {
//移除队列
client.dispatcher.finished(this)
}
}
}
}
- 2.同步请求 RealCall#execute()
override fun execute(): Response {
//同样判断是否执行过
synchronized(this) {
check(!executed) { "Already Executed" }
executed = true
}
timeout.enter()
//同样监听
callStart()
try {
//同样执行
client.dispatcher.executed(this)
return getResponseWithInterceptorChain()
} finally {
//同样移除
client.dispatcher.finished(this)
}
}
(Real)关键处的关键在于getResponseWithInterceptorChain()方法
@Throws(IOException::class)
internal fun getResponseWithInterceptorChain(): Response {
// 构建完整的拦截器堆栈
val interceptors = mutableListOf<Interceptor>()
interceptors += client.interceptors //用户自己拦截器
interceptors += RetryAndFollowUpInterceptor(client) //失败后的重试和重定向
interceptors += BridgeInterceptor(client.cookieJar) //桥接用户的信息和服务器的信息
interceptors += CacheInterceptor(client.cache) //处理缓存相关
interceptors += ConnectInterceptor //负责与服务器连接
if (!forWebSocket) {
interceptors += client.networkInterceptors //配置 OkHttpClient 时设置的
}
interceptors += CallServerInterceptor(forWebSocket) //负责向服务器发送请求数据、从服务器读取响应数据
//创建拦截链
val chain = RealInterceptorChain(
call = this,
interceptors = interceptors,
index = 0,
exchange = null,
request = originalRequest,
connectTimeoutMillis = client.connectTimeoutMillis,
readTimeoutMillis = client.readTimeoutMillis,
writeTimeoutMillis = client.writeTimeoutMillis
)
var calledNoMoreExchanges = false
try {
//拦截链的执行 1.
val response = chain.proceed(originalRequest)
if (isCanceled()) {
response.closeQuietly()
throw IOException("Canceled")
}
return response
} catch (e: IOException) {
calledNoMoreExchanges = true
throw noMoreExchanges(e) as Throwable
} finally {
if (!calledNoMoreExchanges) {
noMoreExchanges(null)
}
}
}
//1.RealInterceptorChain#proceed(request: Request)
@Throws(IOException::class)
override fun proceed(request: Request): Response {
...
// copy出新的拦截链,链中的拦截器集合index+1
val next = copy(index = index + 1, request = request)
val interceptor = interceptors[index]
//调用拦截器的intercept(chain: Chain): Response 返回处理后的数据 交由下一个拦截器处理
@Suppress("USELESS_ELVIS")
val response = interceptor.intercept(next) ?: throw NullPointerException(
"interceptor $interceptor returned null")
...
//返回最终的响应体
return response
}
这里采用责任链的模式来使每个功能分开,每个Interceptor自行完成自己的任务,并且将不属于自己的任务交给下一个,简化了各自的责任和逻辑,和View中的事件分发机制类似.
- 再来一张时序图
OkHttp关键中的核心就是这每一个拦截器 具体怎么实现还需要look look,这里就看一个CacheInterceptor吧
- CacheInterceptor.kt
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
//在Cache(DiskLruCache)类中 通过request.url匹配response
val cacheCandidate = cache?.get(chain.request())
//记录当前时间点
val now = System.currentTimeMillis()
//缓存策略 有两种类型
//networkRequest 网络请求
//cacheResponse 缓存的响应
val strategy = CacheStrategy.Factory(now, chain.request(), cacheCandidate).compute()
val networkRequest = strategy.networkRequest
val cacheResponse = strategy.cacheResponse
//计算请求次数和缓存次数
cache?.trackResponse(strategy)
...
// 如果 禁止使用网络 并且 缓存不足,返回504和空body的Response
if (networkRequest == null && cacheResponse == null) {
return Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(HTTP_GATEWAY_TIMEOUT)
.message("Unsatisfiable Request (only-if-cached)")
.body(EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build()
}
// 如果策略中不能使用网络,就把缓存中的response封装返回
if (networkRequest == null) {
return cacheResponse!!.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build()
}
//调用拦截器process从网络获取数据
var networkResponse: Response? = null
try {
networkResponse = chain.proceed(networkRequest)
} finally {
// If we're crashing on I/O or otherwise, don't leak the cache body.
if (networkResponse == null && cacheCandidate != null) {
cacheCandidate.body?.closeQuietly()
}
}
//如果有缓存的Response
if (cacheResponse != null) {
//如果网络请求返回code为304 即说明资源未修改
if (networkResponse?.code == HTTP_NOT_MODIFIED) {
//直接封装封装缓存的Response返回即可
val response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers, networkResponse.headers))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis)
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis)
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build()
networkResponse.body!!.close()
// Update the cache after combining headers but before stripping the
// Content-Encoding header (as performed by initContentStream()).
cache!!.trackConditionalCacheHit()
cache.update(cacheResponse, response)
return response
} else {
cacheResponse.body?.closeQuietly()
}
}
val response = networkResponse!!.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build()
if (cache != null) {
//判断是否具有主体 并且 是否可以缓存供后续使用
if (response.promisesBody() && CacheStrategy.isCacheable(response, networkRequest)) {
// 加入缓存中
val cacheRequest = cache.put(response)
return cacheWritingResponse(cacheRequest, response)
}
//如果请求方法无效 就从缓存中remove掉
if (HttpMethod.invalidatesCache(networkRequest.method)) {
try {
cache.remove(networkRequest)
} catch (_: IOException) {
// The cache cannot be written.
}
}
}
return response
}
总结
- OkHttpClient为Request创建RealCall
- RealCall的enqueue(responseCallback: Callback)异步请求通过Dispatcher实现,和execute()同步请求一样最终调用getResponseWithInterceptorChain()
- getResponseWithInterceptorChain()通过责任链模式用每个不同职责Interceptor处理Response返回数据
最后
- 如果文中如果有什么纰漏欢迎讨论与指出。
- 参考
拆轮子系列:拆 OkHttp
网友评论