美文网首页
詹森不等式(Jensen's Inquality)

詹森不等式(Jensen's Inquality)

作者: 贤良 | 来源:发表于2019-08-18 11:38 被阅读0次

设 f(x) 在区间 (a,b) 内存在二阶导数,且 f^{\prime\prime}(x)<0 ,则对于 (a,b) 内的任意两个不同的 x_{1}  与 x_{2}  , 以及满足 s + t = 1 , 0<s<1 的两个数 s 与 t,均有

                                                          f(sx_{1}  + tx_{2}) > sf(x_{1}) + tf(x_{2}) .

【方法一】 将 f(x) 在某点 x = x_{0} 处按拉格朗日余项的泰勒公式展开至 n = 1

                                       f(x) = f(x_{0}) + f^{\prime}(x_{0})(x - x_{0}) + \frac{1}{2!}f^{\prime\prime}(\xi )(x-x_{0})^2 .

                    分别以 x = x_{1} , x = x_{2} 代入,得到两个式子:

                                        f(x_{1}) = f(x_{0}) + f^{\prime}(x_{0})(x_{1} - x_{0}) + \frac{1}{2!}f^{\prime\prime}(\xi )(x_{1} - x_{0})^2

                                       f(x_{2}) = f(x_{0}) + f^{\prime}(x_{0})(x_{2} - x_{0}) + \frac{1}{2!}f^{\prime\prime}(\xi )(x_{2} - x_{0})^2 .

                    将第一式两边乘 s,第二式两边乘 t,相加,得

sf(x_{1}) + tf(x_{2})  = f(x_{0}) + f^{\prime}(x_{0})(sx_{1} + tx_{2} - x_{0}) + \frac{s}{2}f^{\prime\prime}(\xi_{1} )(x_{1} - x_{2})^2 + \frac{t}{2}f^{\prime\prime}( \xi_{2})(x_{2} - x_{0})^2

                    取 x_{0} = sx_{1} + tx_{2} ,由于 s + t =1 , 0 < s < 1 , 从而 0 < t < 1,x_{0} 介于 x_{1} 与 x_{2} 之间,于是 x_{0} \in  (a,b), 有

sf(x_{1}) + tf(x_{2})  = f(sx_{1}+tx_{2}) + 0 + \frac{s}{2}f^{\prime\prime}(\xi_{1})(t(x_{2}-x_{1})^2) +\frac{t}{2}f^{\prime\prime}(\xi_{2})(s(x_{1}-x_{2})^2 ) < f(sx_{1}+tx_{2})

                    证毕。

【方法二】 将欲证之式写到一边,

             f(sx_{1}+tx_{2})-sf(x_{1})-tf(x_{2}) =(s+t)f(sx_{1}+tx_{2})-sf(x_{1})-tf(x_{2})

                                  =s[f(sx_{1}+tx_{2})-f(x_{1})]-t[f(x_{2})-f(sx_{1}+tx_{2})]   

                                  =sf^{\prime}(\xi _{1})[(s-1)x_{1}+tx_{2}]-tf^{\prime}(\xi _{2})[(1-t)x_{2}-sx_{1}]

                                  =stf^{\prime}(\xi _{1})(x_{2}-x_{1})-stf^{\prime}(\xi _{2})(x_{2}-x_{1})

                                  =stf^{\prime\prime}(\xi_{3})(\xi_{1} - \xi_{2})(x_{2}-x_{1})

不妨设 x_{1} < x_{2} ,于是 x_{1} <\xi_{1} < sx_{1}+tx_{2} < \xi_{2} < x_{2},所以 x_{2} - x_{1} > 0,  \xi_{2} - \xi_{1}>0, 再有f^{\prime\prime}(x)<0, 从而推知

                                                                f(sx_{1}+tx_{2})-sf(x_{1})-tf(x_{2})>0

即有 f(sx_{1}+tx_{2})>sf(x_{1})+tf(x_{2}), 证毕。

P66

【评注】

1. 注意 \xi_{1},\xi_{2},\xi_{3} 的区别.

2. 如果将条件中区间 (a,b) 改为 [a,b] ,则结论中 (a,b) 亦可改为 [a,b].

3. 如果将条件 “f^{\prime\prime}(x)<0” 与 “0<s<1” 分别放宽到 “f^{\prime\prime}(x)\leq 0” 与 “0\leq s\leq 1”,则结论亦应该为“f(sx_{1}+tx_{2})\geq sf(x_{1})+tf(x_{2})”.

相关文章

网友评论

      本文标题:詹森不等式(Jensen's Inquality)

      本文链接:https://www.haomeiwen.com/subject/yzxqtttx.html