美文网首页
[转]奇异值分解SVD简介及其在推荐系统中的简单应用

[转]奇异值分解SVD简介及其在推荐系统中的简单应用

作者: 道简术心 | 来源:发表于2018-08-26 17:45 被阅读254次

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统。

    1.SVD详解

    SVD(singular value decomposition),翻译成中文就是奇异值分解。SVD的用处有很多,比如:LSA(隐性语义分析)、推荐系统、特征压缩(或称数据降维)。SVD可以理解为:将一个比较复杂的矩阵用更小更简单的****3****个子矩阵的相乘来表示,这3****个小矩阵描述了大矩阵重要的特性。

    1.1****奇异值分解的几何意义(因公式输入比较麻烦所以采取截图的方式)

    image image image image image image image image image image image image image image

    2.SVD****应用于推荐系统

    数据集中行代表用户user,列代表物品item,其中的值代表用户对物品的打分。基于SVD的优势在于:用户的评分数据是稀疏矩阵,可以用SVD将原始数据映射到低维空间中,然后计算物品item之间的相似度,可以节省计算资源。

    整体思路:先找到用户没有评分的物品,然后再经过SVD“压缩”后的低维空间中,计算未评分物品与其他物品的相似性,得到一个预测打分,再对这些物品的评分从高到低进行排序,返回前N个物品推荐给用户。
    具体代码如下,主要分为5部分:

    第1部分:加载测试数据集;

    第2部分:定义三种计算相似度的方法;

    第3部分:通过计算奇异值平方和的百分比来确定将数据降到多少维才合适,返回需要降到的维度;

    第4部分:在已经降维的数据中,基于SVD对用户未打分的物品进行评分预测,返回未打分物品的预测评分值;

    第5部分:产生前N个评分值高的物品,返回物品编号以及预测评分值。

    优势在于:用户的评分数据是稀疏矩阵,可以用SVD将数据映射到低维空间,然后计算低维空间中的item之间的相似度,对用户未评分的item进行评分预测,最后将预测评分高的item推荐给用户。

    #coding=utf-8
    from numpy import *
    from numpy import linalg as la
    
    '''加载测试数据集'''
    def loadExData():
        return mat([[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5],
               [0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3],
               [0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0],
               [3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0],
               [5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0],
               [0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0],
               [4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1],
               [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4],
               [0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2],
               [0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0],
               [1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]])
    
    '''以下是三种计算相似度的算法,分别是欧式距离、皮尔逊相关系数和余弦相似度,
    注意三种计算方式的参数inA和inB都是列向量'''
    def ecludSim(inA,inB):
        return 1.0/(1.0+la.norm(inA-inB))  #范数的计算方法linalg.norm(),这里的1/(1+距离)表示将相似度的范围放在0与1之间
    
    def pearsSim(inA,inB):
        if len(inA)<3: return 1.0
        return 0.5+0.5*corrcoef(inA,inB,rowvar=0)[0][1]  #皮尔逊相关系数的计算方法corrcoef(),参数rowvar=0表示对列求相似度,这里的0.5+0.5*corrcoef()是为了将范围归一化放到0和1之间
    
    def cosSim(inA,inB):
        num=float(inA.T*inB)
        denom=la.norm(inA)*la.norm(inB)
        return 0.5+0.5*(num/denom) #将相似度归一到0与1之间
    
    '''按照前k个奇异值的平方和占总奇异值的平方和的百分比percentage来确定k的值,
    后续计算SVD时需要将原始矩阵转换到k维空间'''
    def sigmaPct(sigma,percentage):
        sigma2=sigma**2 #对sigma求平方
        sumsgm2=sum(sigma2) #求所有奇异值sigma的平方和
        sumsgm3=0 #sumsgm3是前k个奇异值的平方和
        k=0
        for i in sigma:
            sumsgm3+=i**2
            k+=1
            if sumsgm3>=sumsgm2*percentage:
                return k
    
    '''函数svdEst()的参数包含:数据矩阵、用户编号、物品编号和奇异值占比的阈值,
    数据矩阵的行对应用户,列对应物品,函数的作用是基于item的相似性对用户未评过分的物品进行预测评分'''
    def svdEst(dataMat,user,simMeas,item,percentage):
        n=shape(dataMat)[1]
        simTotal=0.0;ratSimTotal=0.0
        u,sigma,vt=la.svd(dataMat)
        k=sigmaPct(sigma,percentage) #确定了k的值
        sigmaK=mat(eye(k)*sigma[:k])  #构建对角矩阵
        xformedItems=dataMat.T*u[:,:k]*sigmaK.I  #根据k的值将原始数据转换到k维空间(低维),xformedItems表示物品(item)在k维空间转换后的值
        for j in range(n):
            userRating=dataMat[user,j]
            if userRating==0 or j==item:continue
            similarity=simMeas(xformedItems[item,:].T,xformedItems[j,:].T) #计算物品item与物品j之间的相似度
            simTotal+=similarity #对所有相似度求和
            ratSimTotal+=similarity*userRating #用"物品item和物品j的相似度"乘以"用户对物品j的评分",并求和
        if simTotal==0:return 0
        else:return ratSimTotal/simTotal #得到对物品item的预测评分
    
    '''函数recommend()产生预测评分最高的N个推荐结果,默认返回5个;
    参数包括:数据矩阵、用户编号、相似度衡量的方法、预测评分的方法、以及奇异值占比的阈值;
    数据矩阵的行对应用户,列对应物品,函数的作用是基于item的相似性对用户未评过分的物品进行预测评分;
    相似度衡量的方法默认用余弦相似度'''
    def recommend(dataMat,user,N=5,simMeas=cosSim,estMethod=svdEst,percentage=0.9):
        unratedItems=nonzero(dataMat[user,:].A==0)[1]  #建立一个用户未评分item的列表
        if len(unratedItems)==0:return 'you rated everything' #如果都已经评过分,则退出
        itemScores=[]
        for item in unratedItems:  #对于每个未评分的item,都计算其预测评分
            estimatedScore=estMethod(dataMat,user,simMeas,item,percentage)
            itemScores.append((item,estimatedScore))
        itemScores=sorted(itemScores,key=lambda x:x[1],reverse=True)#按照item的得分进行从大到小排序
        return itemScores[:N]  #返回前N大评分值的item名,及其预测评分值
    

    将文件命名为svd2.py,在python提示符下输入:

    >>>import svd2
    >>>testdata=svd2.loadExData()
    >>>svd2.recommend(testdata,1,N=3,percentage=0.8)#对编号为1的用户推荐评分较高的3件商品
    

    1.Peter Harrington,《机器学习实战》,人民邮电出版社,2013

    2.http://www.ams.org/samplings/feature-column/fcarc-svd (讲解SVD非常好的一篇文章,对于理解SVD非常有帮助,本文中SVD的几何意义就是参考这篇)

    1. http://blog.csdn.net/xiahouzuoxin/article/details/41118351 (讲解SVD与特征值分解区别的一篇文章)

    相关文章

      网友评论

          本文标题:[转]奇异值分解SVD简介及其在推荐系统中的简单应用

          本文链接:https://www.haomeiwen.com/subject/zaioiftx.html