作者: Drew_MyINTYRE | 来源:发表于2021-05-30 17:42 被阅读0次

    悲观锁/乐观锁

    悲观锁比较悲观,会在每次获取并修改数据时,都把数据锁住,让其他线程无法访问该数据,这样就可以确保数据内容万无一失。乐观锁比较乐观,为了确保数据正确性,在更新之前,会去对比在我修改数据期间,数据有没有被其他线程修改过:如果没被修改过,就说明真的只有我自己在操作,那我就可以正常的修改数据;如果发现数据和我一开始拿到的不一样了,说明其他线程在这段时间内修改过数据,那说明我迟了一步,所以我会放弃这次修改,并选择报错、重试等策略。悲观锁和乐观锁概念并不是 Java 中独有的,这是一种广义的思想,这种思想可以应用于其他领域,比如说在数据库中,同样也有对悲观锁和乐观锁的应用。

    悲观锁由于它的操作比较重量级,不能多个线程并行执行,而且还会有上下文切换等动作,所以悲观锁的性能不如乐观锁好,应该尽量避免用悲观锁,这种说法是不正确的。

    乐观锁虽然一开始的开销比悲观锁小,但是如果一直拿不到锁,或者并发量大,竞争激烈,导致不停重试,那么消耗的资源也会越来越多,甚至开销会超过悲观锁。

    悲观锁适合用于并发写入多、临界区代码复杂、竞争激烈等场景,这种场景下悲观锁可以避免大量的无用的反复尝试等消耗。

    乐观锁适用于大部分是读取,少部分是修改的场景,也适合虽然读写都很多,但是并发并不激烈的场景。在这些场景下,乐观锁不加锁的特点能让性能大幅提高。

    可中断锁/不可中断锁

    在 Java 中,synchronized 关键字修饰的锁代表的是不可中断锁,一旦线程申请了锁,就没有回头路了,只能等到拿到锁以后才能进行其他的逻辑处理。而我们的 ReentrantLock 是一种典型的可中断锁,例如使用 lockInterruptibly 方法在获取锁的过程中,突然不想获取了,那么也可以在中断之后去做其他的事情

    一旦 synchronized 锁已经被某个线程获得了,此时其他线程如果还想获得,那它只能被阻塞,直到持有锁的线程运行完毕或者发生异常从而释放这个锁。如果持有锁的线程持有很长时间才释放,那么整个程序的运行效率就会降低,而且如果持有锁的线程永远不释放锁,那么尝试获取锁的线程只能永远等下去。

    相比之下,Lock 类在等锁的过程中,如果使用的是 lockInterruptibly 方法,那么如果觉得等待的时间太长了不想再继续等待,可以中断退出,也可以用 tryLock() 等方法尝试获取锁,如果获取不到锁也可以做别的事,更加灵活。

    synchronized vs Lock

    • synchronized 锁只能同时被一个线程拥有,但是 Lock 锁没有这个限制
      例如在读写锁中的读锁,是可以同时被多个线程持有的,可是 synchronized 做不到。

    • 原理区别
      synchronized 是内置锁,由 JVM 实现获取锁和释放锁的原理,还分为偏向锁、轻量级锁、重量级锁。

    Lock 根据实现不同,有不同的原理,例如 ReentrantLock 内部是通过 AQS 来获取和释放锁的。ReentrantLock 等 Lock 实现类可以根据自己的需要来设置公平或非公平,synchronized 则不能设置。

    如何选择?

    1,如果能不用最好既不使用 Lock 也不使用 synchronized。因为在许多情况下你可以使用 java.util.concurrent 包中的机制,它会为你处理所有的加锁和解锁操作,也就是推荐优先使用工具类来加解锁。

    2,如果 synchronized 关键字适合你的程序, 那么请尽量使用它,这样可以减少编写代码的数量,减少出错的概率。因为一旦忘记在 finally 里 unlock,代码可能会出很大的问题,而使用 synchronized 更安全。

    3,如果特别需要 Lock 的特殊功能,比如尝试获取锁、可中断、超时功能等,才使用 Lock。

    公平锁和非公平锁,为什么要“非公平”?

    公平锁就是会按照多个线程申请锁的顺序来获取锁,从而实现公平的特性。非公平锁加锁时不考虑排队等待情况,直接尝试获取锁,所以存在后申请却先获得锁的情况,但由此也提高了整体的效率。

    让我们考虑一种情况,假设线程 A 持有一把锁,线程 B 请求这把锁,由于线程 A 已经持有这把锁了,所以线程 B 会陷入等待,在等待的时候线程 B 会被挂起,也就是进入阻塞状态,那么当线程 A 释放锁的时候,本该轮到线程 B 苏醒获取锁,但如果此时突然有一个线程 C 插队请求这把锁,那么根据非公平的策略,会把这把锁给线程 C,这是因为唤醒线程 B 是需要很大开销的,很有可能在唤醒之前,线程 C 已经拿到了这把锁并且执行完任务释放了这把锁。相比于等待唤醒线程 B 的漫长过程,插队的行为会让线程 C 本身跳过陷入阻塞的过程,如果在锁代码中执行的内容不多的话,线程 C 就可以很快完成任务,并且在线程 B 被完全唤醒之前,就把这个锁交出去,这样是一个双赢的局面,对于线程 C 而言,不需要等待提高了它的效率,而对于线程 B 而言,它获得锁的时间并没有推迟,因为等它被唤醒的时候,线程 C 早就释放锁了,因为线程 C 的执行速度相比于线程 B 的唤醒速度,是很快的,所以 Java 设计者设计非公平锁,是为了提高整体的运行效率。

    为什么写锁还没释放,就可以获取读锁呢? 获取读锁的时候不是应该阻塞住了么?
    同一个线程内,不会阻塞住。

    升降级策略:只能从写锁降级为读锁,不能从读锁升级为写锁。

    为什么不支持锁的升级?

    我们知道读写锁的特点是如果线程都申请读锁,是可以多个线程同时持有的,可是如果是写锁,只能有一个线程持有,并且不可能存在读锁和写锁同时持有的情况。

    正是因为不可能有读锁和写锁同时持有的情况,所以升级写锁的过程中,需要等到所有的读锁都释放,此时才能进行升级。

    但是我们考虑一种特殊情况。假设线程 A 和 B 都想升级到写锁,那么对于线程 A 而言,它需要等待其他所有线程,包括线程 B 在内释放读锁。而线程 B 也需要等待所有的线程,包括线程 A 释放读锁。这就是一种非常典型的死锁的情况。谁都愿不愿意率先释放掉自己手中的锁。

    但是读写锁的升级并不是不可能的,也有可以实现的方案,如果我们保证每次只有一个线程可以升级,那么就可以保证线程安全。只不过最常见的 ReentrantReadWriteLock 对此并不支持。

    共享锁/独占锁

    读写锁中的读锁,是共享锁,而写锁是独占锁。读锁可以被同时读,可以同时被多个线程持有,而写锁最多只能同时被一个线程持有。

    我们在使用读写锁时遵守下面的获取规则:

    1,如果有一个线程已经占用了读锁,则此时其他线程如果要申请读锁,可以申请成功。

    2,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁,因为读写不能同时操作。

    3,如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,都必须等待之前的线程释放写锁,同样也因为读写不能同时,并且两个线程不应该同时写。

    可重入锁/非可重入锁

    可重入锁指的是线程当前已经持有这把锁了,能在不释放这把锁的情况下,再次获取这把锁。同理,不可重入锁指的是虽然线程当前持有了这把锁,但是如果想再次获取这把锁,也必须要先释放锁后才能再次尝试获取。

    自旋锁/非自旋锁

    自旋锁的理念是如果线程现在拿不到锁,并不直接陷入阻塞或者释放 CPU 资源,而是开始利用循环,不停地尝试获取锁,这个循环过程被形象地比喻为“自旋”,就像是线程在“自我旋转”。相反,非自旋锁的理念就是没有自旋的过程,如果拿不到锁就直接放弃,或者进行其他的处理逻辑,例如去排队、陷入阻塞等。

    阻塞和唤醒线程都是需要高昂的开销的(这些都是线程的状态 ),用一句话总结自旋锁的好处,那就是自旋锁用循环去不停地尝试获取锁,让线程始终处于 Runnable 状态,节省了线程状态切换带来的开销。

    自旋锁的缺点,因为它需要不停得去尝试获取锁。如果这把锁一直不能被释放,那么这种尝试只是无用的尝试,会白白浪费处理器资源。

    自旋锁适用于并发度不是特别高的场景。线程一旦拿到锁,很久才会释放的话,那就不合适用自旋锁,因为自旋会一直占用 CPU 却无法拿到锁,白白消耗资源。

    AtomicLong 的实现

    在 Java 1.5 版本及以上的并发包中,也就是 java.util.concurrent 的包中,里面的原子类基本都是自旋锁的实现。

    锁升级的路径

    最后,我们看下锁的升级路径,如图所示。从无锁到偏向锁,再到轻量级锁,最后到重量级锁。结合前面我们讲过的知识,偏向锁性能最好,避免了 CAS 操作。而轻量级锁利用自旋和 CAS 避免了重量级锁带来的线程阻塞和唤醒,性能中等。重量级锁则会把获取不到锁的线程阻塞,性能最差。

    CgpOIF4VUHSAFpAZAAANfyy0aXE323.png

    JVM 默认会优先使用偏向锁,如果有必要的话才逐步升级,这大幅提高了锁的性能。

    相关文章

      网友评论

          本文标题:

          本文链接:https://www.haomeiwen.com/subject/zanhsltx.html