美文网首页
Python数据分析与机器学习41-使用Gensim库构造中文维

Python数据分析与机器学习41-使用Gensim库构造中文维

作者: 只是甲 | 来源:发表于2022-08-02 17:34 被阅读0次

一. 维基百科中文数据

1.1 数据下载

下载网址:
https://dumps.wikimedia.org/zhwiki/20220720/

image.png

解压:
解压后数据集差不多10G

image.png

使用编辑器浏览数据格式:

image.png
image.png

1.2 数据预处理

将xml.bz2的数据,通过python程序转为text文档数据

代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# 修改后的代码如下:
import logging
import os.path
import sys
from gensim.corpora import WikiCorpus

if __name__ == '__main__':

    program = os.path.basename(sys.argv[0])
    logger = logging.getLogger(program)
    logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
    logging.root.setLevel(level=logging.INFO)
    logger.info("running %s" % ' '.join(sys.argv))
    # check and process input arguments
    if len(sys.argv) < 3:
        #print(globals()['__doc__'] % locals())
        sys.exit(1)
    inp, outp = sys.argv[1:3]
    space = ' '
    i = 0
    output = open(outp, 'w', encoding='utf-8')
    # wiki = WikiCorpus(inp, lemmatize=False, dictionary={})
    wiki = WikiCorpus(inp, dictionary={})
    for text in wiki.get_texts():
        s = space.join(text)
        #s = s.decode('utf8') + "\n"
        s = s + "\n"
        output.write(s)
        i = i + 1
        if (i % 10000 == 0):
            logger.info("Saved " + str(i) + " articles")
    output.close()
    logger.info("Finished Saved " + str(i) + " articles")
# python process.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text

测试记录:

python process.py E:/python/数据分析/机器学习/word2vec/维基百科中文数据/zhwiki-20220720-pages-articles-multistream.xml.bz2  wiki.zh.text

2022-07-22 11:47:20,200: INFO: Saved 10000 articles
2022-07-22 11:47:49,804: INFO: Saved 20000 articles
2022-07-22 11:48:15,985: INFO: Saved 30000 articles
2022-07-22 11:48:41,948: INFO: Saved 40000 articles
2022-07-22 11:49:07,655: INFO: Saved 50000 articles
2022-07-22 11:49:32,707: INFO: Saved 60000 articles
2022-07-22 11:49:56,776: INFO: Saved 70000 articles
2022-07-22 11:50:20,577: INFO: Saved 80000 articles
2022-07-22 11:50:44,223: INFO: Saved 90000 articles
2022-07-22 11:51:07,352: INFO: Saved 100000 articles
2022-07-22 11:51:32,792: INFO: Saved 110000 articles
2022-07-22 11:52:02,830: INFO: Saved 120000 articles
2022-07-22 11:52:27,015: INFO: Saved 130000 articles
2022-07-22 11:52:55,681: INFO: Saved 140000 articles
2022-07-22 11:53:22,406: INFO: Saved 150000 articles
2022-07-22 11:53:51,108: INFO: Saved 160000 articles
2022-07-22 11:54:17,588: INFO: Saved 170000 articles
2022-07-22 11:54:44,145: INFO: Saved 180000 articles
2022-07-22 11:55:12,876: INFO: Saved 190000 articles
2022-07-22 11:57:02,681: INFO: Saved 200000 articles
2022-07-22 11:57:37,999: INFO: Saved 210000 articles
2022-07-22 11:58:24,656: INFO: Saved 220000 articles
2022-07-22 11:58:57,855: INFO: Saved 230000 articles
2022-07-22 11:59:30,406: INFO: Saved 240000 articles
2022-07-22 12:00:07,523: INFO: Saved 250000 articles
2022-07-22 12:00:39,435: INFO: Saved 260000 articles
2022-07-22 12:01:16,402: INFO: Saved 270000 articles
2022-07-22 12:01:50,524: INFO: Saved 280000 articles
2022-07-22 12:02:24,565: INFO: Saved 290000 articles
2022-07-22 12:02:56,571: INFO: Saved 300000 articles
2022-07-22 12:03:25,060: INFO: Saved 310000 articles
2022-07-22 12:03:58,827: INFO: Saved 320000 articles
2022-07-22 12:04:31,788: INFO: Saved 330000 articles
2022-07-22 12:05:09,589: INFO: Saved 340000 articles
2022-07-22 12:05:44,559: INFO: Saved 350000 articles
2022-07-22 12:06:22,483: INFO: Saved 360000 articles
2022-07-22 12:06:59,661: INFO: Saved 370000 articles
2022-07-22 12:07:35,899: INFO: Saved 380000 articles
2022-07-22 12:08:16,372: INFO: Saved 390000 articles
2022-07-22 12:08:50,098: INFO: Saved 400000 articles
2022-07-22 12:09:24,153: INFO: Saved 410000 articles
2022-07-22 12:09:59,611: INFO: Saved 420000 articles
2022-07-22 12:10:35,669: INFO: Saved 430000 articles
2022-07-22 12:10:45,356: INFO: finished iterating over Wikipedia corpus of 432882 documents with 100469267 positions (total 4078948 articles, 118486509 positions before pruning articles shorter than 50 words)
2022-07-22 12:10:45,554: INFO: Finished Saved 432882 articles

查看解析后的数据:
都是繁体字

image.png

1.3 将繁体字转为简体字

1.3.1 opencc安装

1.3.1.1 pip安装

pip之间安装opencc报错


image.png

应该使用如下命令:

pip install opencc-python-reimplemented

参数解释:

image.png

1.3.1.2 windows安装

下载地址:
https://github.com/BYVoid/OpenCC/wiki/Download

image.png

配置文件:

image.png

1.3.2 windows下opencc使用

拷贝文件到bin目录:

image.png

查看opcc的帮助命令:

E:\python\数据分析\机器学习\word2vec\OpenCC\build\bin>opencc --help

Open Chinese Convert (OpenCC) Command Line Tool
Author: Carbo Kuo <byvoid@byvoid.com>
Bug Report: http://github.com/BYVoid/OpenCC/issues

Usage:

   opencc  [--noflush <bool>] [-i <file>] [-o <file>] [-c <file>] [--]
           [--version] [-h]

Options:

   --noflush <bool>
     Disable flush for every line

   -i <file>,  --input <file>
     Read original text from <file>.

   -o <file>,  --output <file>
     Write converted text to <file>.

   -c <file>,  --config <file>
     Configuration file

   --,  --ignore_rest
     Ignores the rest of the labeled arguments following this flag.

   --version
     Displays version information and exits.

   -h,  --help
     Displays usage information and exits.


   Open Chinese Convert (OpenCC) Command Line Tool


E:\python\数据分析\机器学习\word2vec\OpenCC\build\bin>

将繁体字转为简体字:

opencc -i E:\python\数据分析\机器学习\word2vec\wiki.zh.text -o E:\python\数据分析\机器学习\word2vec\wiki_简体.zh.text -c t2s.json
image.png

二. 使用jieba进行分词

代码:

import jieba
import jieba.analyse
import jieba.posseg as pseg
import codecs,sys
def cut_words(sentence):
    #print sentence
    return " ".join(jieba.cut(sentence)).encode('utf-8')
f=codecs.open('wiki_简体.zh.text','r',encoding="utf8")
target = codecs.open("wiki_简体.zh.分词.seg-1.3g.text", 'w',encoding="utf8")
print ('open files')
line_num=1
line = f.readline()
while line:
    print('---- processing ', line_num, ' article----------------')
    line_seg = " ".join(jieba.cut(line))
    target.writelines(line_seg)
    line_num = line_num + 1
    line = f.readline()
f.close()
target.close()
exit()
while line:
    curr = []
    for oneline in line:
        #print(oneline)
        curr.append(oneline)
    after_cut = map(cut_words, curr)
    target.writelines(after_cut)
    print ('saved',line_num,'articles')
    exit()
    line = f.readline1()
f.close()
target.close()

# python Testjieba.py

测试记录:
分词完成后的文本如下:

image.png

三. 生成词向量

python代码:

import logging
import os.path
import sys
import multiprocessing
from gensim.corpora import WikiCorpus
from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence
if __name__ == '__main__':
    
    program = os.path.basename(sys.argv[0])
    logger = logging.getLogger(program)
    logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
    logging.root.setLevel(level=logging.INFO)
    logger.info("running %s" % ' '.join(sys.argv))
    # check and process input arguments
    if len(sys.argv) < 4:
        print (globals()['__doc__'] % locals())
        sys.exit(1)
    inp, outp1, outp2 = sys.argv[1:4]
    model = Word2Vec(LineSentence(inp), window=5, min_count=5, workers=multiprocessing.cpu_count())
    model.save(outp1)
    model.wv.save_word2vec_format(outp2, binary=False)
#python word2vec_model.py zh.jian.wiki.seg.txt wiki.zh.text.model wiki.zh.text.vector
#opencc -i wiki_texts.txt -o test.txt -c t2s.json

运行python程序:

python word2vec_model.py wiki_简体.zh.分词.seg-1.3g.text wiki_简体.zh.分词.seg-1.3g.text.model wiki_简体.zh.分词.seg-1.3g.text.vector

测试记录:
新生成的文件:

image.png
model文件内容如下:
image.png

四. 测试

输出与我的测试词最接近的5个词
代码:

from gensim.models import Word2Vec

en_wiki_word2vec_model = Word2Vec.load('wiki_简体.zh.分词.seg-1.3g.text.model')

testwords = ['苹果','数学','学术','白痴','篮球']
for i in range(5):
    res = en_wiki_word2vec_model.wv.most_similar(testwords[i])
    print (testwords[i])
    print (res)

测试记录:

苹果
[('洋葱', 0.6776813268661499), ('apple', 0.6557675004005432), ('黑莓', 0.6425948143005371), ('草莓', 0.6342688798904419), ('小米', 0.6270812153816223), ('坚果', 0.6188254952430725), ('苹果公司', 0.6164141893386841), ('果冻', 0.6137404441833496), ('咖啡', 0.604507327079773), ('籽', 0.597305178642273)]
数学
[('微积分', 0.8419661521911621), ('算术', 0.8334301710128784), ('数学分析', 0.7725528478622437), ('概率论', 0.7687932252883911), ('数论', 0.763685405254364), ('逻辑学', 0.7549666166305542), ('高等数学', 0.7526171803474426), ('物理', 0.7509859800338745), ('数理逻辑', 0.7463771104812622), ('拓扑学', 0.7362903952598572)]
学术
[('学术研究', 0.8562514781951904), ('社会科学', 0.7332450747489929), ('自然科学', 0.7266139388084412), ('学术界', 0.7095916867256165), ('法学', 0.7089691758155823), ('汉学', 0.7063266038894653), ('科学研究', 0.7001381516456604), ('跨学科', 0.6969149708747864), ('学术活动', 0.6920358538627625), ('史学', 0.6917674541473389)]
白痴
[('傻子', 0.764008641242981), ('书呆子', 0.709040105342865), ('疯子', 0.7005040049552917), ('笨蛋', 0.674527108669281), ('傻瓜', 0.6599918603897095), ('骗子', 0.6531063914299011), ('爱哭鬼', 0.650740921497345), ('天才', 0.6505906581878662), ('蠢', 0.6501168012619019), ('娘娘腔', 0.6492332816123962)]
篮球
[('棒球', 0.7790619730949402), ('美式足球', 0.7700984477996826), ('排球', 0.7593865990638733), ('橄榄球', 0.75135737657547), ('网球', 0.7470680475234985), ('冰球', 0.7441636323928833), ('足球', 0.7276999950408936), ('橄榄球队', 0.7252797484397888), ('男子篮球', 0.7197815179824829), ('曲棍球', 0.7128130793571472)]

参考:

  1. https://study.163.com/course/introduction.htm?courseId=1003590004#/courseDetail?tab=1

相关文章

网友评论

      本文标题:Python数据分析与机器学习41-使用Gensim库构造中文维

      本文链接:https://www.haomeiwen.com/subject/zdnuirtx.html