美文网首页
用Python实现机器学习算法—感知器算法

用Python实现机器学习算法—感知器算法

作者: 公子曼步 | 来源:发表于2020-10-06 20:35 被阅读0次

    感知器是一种简单的监督式的机器学习算法,也是最早的神经网络体系结构之一。它由 Rosenblatt 在 20 世纪 50 年代末提出。感知器是一种二元的线性分类器,其使用 d- 维超平面来将一组训练样本( d- 维输入向量)映射成二进制输出值。它的原理如下:

    免费视频教程:www.mlxs.top

    感知器的训练可以使用梯度下降法,训练算法有不同的步骤。首先(在步骤0中),模型的参数将被初始化。在达到指定训练次数或参数收敛前,重复以下其他步骤。

    第 0 步:用 0 (或小的随机值)来初始化权重向量和偏置值

    免费视频教程:www.mlxs.top

    其中,

    表示学习率。

    第 4 步:更新权重向量和偏置量。

    免费视频教程:www.mlxs.top  

    In [1]:

    import numpy as np

    import matplotlib.pyplot as plt

    from sklearn.datasets import make_blobs

    from sklearn.model_selection import train_test_split

    np.random.seed(123)

    % matplotlib inline

    数据集

    In [2]:

    X, y = make_blobs(n_samples=1000, centers=2)

    fig = plt.figure(figsize=(8,6))

    plt.scatter(X[:,0], X[:,1], c=y)

    plt.title("Dataset")

    plt.xlabel("First feature")

    plt.ylabel("Second feature")

    plt.show()

    免费视频教程:www.mlxs.top

    In [3]:

    y_true = y[:, np.newaxis]

    X_train, X_test, y_train, y_test = train_test_split(X, y_true)

    print(f'Shape X_train: {X_train.shape}')

    print(f'Shape y_train: {y_train.shape})')

    print(f'Shape X_test: {X_test.shape}')

    print(f'Shape y_test: {y_test.shape}')

    Shape X_train: (750, 2)

    Shape y_train: (750, 1))

    Shape X_test: (250, 2)

    Shape y_test: (250, 1)

    感知器分类

    In [6]:

    class Perceptron():

        def __init__(self):

            pass

        def train(self, X, y, learning_rate=0.05, n_iters=100):

            n_samples, n_features = X.shape

            # Step 0: Initialize the parameters

            self.weights = np.zeros((n_features,1))

            self.bias = 0

            for i in range(n_iters):

                # Step 1: Compute the activation

                a = np.dot(X, self.weights) + self.bias

                # Step 2: Compute the output

                y_predict = self.step_function(a)

                # Step 3: Compute weight updates

                delta_w = learning_rate * np.dot(X.T, (y - y_predict))

                delta_b = learning_rate * np.sum(y - y_predict)

                # Step 4: Update the parameters

                self.weights += delta_w

                self.bias += delta_b

            return self.weights, self.bias

        def step_function(self, x):

            return np.array([1 if elem >= 0 else 0 for elem in x])[:, np.newaxis]

        def predict(self, X):

            a = np.dot(X, self.weights) + self.bias

            return self.step_function(a)

    初始化并训练模型

    In [7]:

    p = Perceptron()

    w_trained, b_trained = p.train(X_train, y_train,learning_rate=0.05, n_iters=500)

    测试

    In [10]:

    y_p_train = p.predict(X_train)

    y_p_test = p.predict(X_test)

    print(f"training accuracy: {100 - np.mean(np.abs(y_p_train - y_train)) * 100}%")

    print(f"test accuracy: {100 - np.mean(np.abs(y_p_test - y_test)) * 100}%")

    training accuracy: 100.0%

    test accuracy: 100.0%

    可视化决策边界

    In [13]:

    def plot_hyperplane(X, y, weights, bias):

        """

        Plots the dataset and the estimated decision hyperplane

        """

        slope = - weights[0]/weights[1]

        intercept = - bias/weights[1]

        x_hyperplane = np.linspace(-10,10,10)

        y_hyperplane = slope * x_hyperplane + intercept

        fig = plt.figure(figsize=(8,6))

        plt.scatter(X[:,0], X[:,1], c=y)

        plt.plot(x_hyperplane, y_hyperplane, '-')

        plt.title("Dataset and fitted decision hyperplane")

        plt.xlabel("First feature")

        plt.ylabel("Second feature")

        plt.show()

    In [14]:

    plot_hyperplane(X, y, w_trained, b_trained)

    免费视频教程:www.mlxs.top

    相关文章

      网友评论

          本文标题:用Python实现机器学习算法—感知器算法

          本文链接:https://www.haomeiwen.com/subject/zdztpktx.html