美文网首页
Spark2.4.0 源码编译

Spark2.4.0 源码编译

作者: 井地儿 | 来源:发表于2019-03-17 14:19 被阅读0次

Spark源码编译

源码下载

从github上下载最新版本spark源码
https://github.com/apache/spark

Apache Maven(Maven编译)

基于maven的编译的版本要求如下:
Maven版本:3.5.4+
Java版本:java8+

设置maven使用内存

export MAVEN_OPTS="-Xmx2g -XX:ReservedCodeCacheSize=512m"

如果没有设置上述参数,可能会报错:

[INFO] Compiling 203 Scala sources and 9 Java sources to /Users/me/Development/spark/core/target/scala-2.11/classes...
[ERROR] Java heap space -> [Help 1]

build/mvn

Spark提供了自动化maven编译脚本,会自动下载安装编译所需要的Maven,Scala,Zinc。
编译命令

./build/mvn -DskipTests clean package

mac环境下,如果你曾从bash风格切换到zsh风格之后,没有在.zshrc中配置JAVA_HOME环境变量,可能会报错:

Cannot run program "/Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Contents/Home/jre/bin/javac": error=2, No such file or directory

在 ~/.zshrc 配置文件中配置JAVA_HOME即可。

building...

stefan@localhost  ~/Documents/workspace/code/spark   master  ./build/mvn -DskipTests clean package
Using `mvn` from path: /Users/stefan/Documents/workspace/code/spark/build/apache-maven-3.6.0/bin/mvn
[INFO] Scanning for projects...
...
[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary for Spark Project Parent POM 3.0.0-SNAPSHOT:
[INFO]
[INFO] Spark Project Parent POM ........................... SUCCESS [  4.010 s]
[INFO] Spark Project Tags ................................. SUCCESS [  7.204 s]
[INFO] Spark Project Sketch ............................... SUCCESS [  6.099 s]
[INFO] Spark Project Local DB ............................. SUCCESS [  3.870 s]
[INFO] Spark Project Networking ........................... SUCCESS [  8.308 s]
[INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [  3.860 s]
[INFO] Spark Project Unsafe ............................... SUCCESS [  6.418 s]
[INFO] Spark Project Launcher ............................. SUCCESS [  5.159 s]
[INFO] Spark Project Core ................................. SUCCESS [02:01 min]
[INFO] Spark Project ML Local Library ..................... SUCCESS [  5.823 s]
[INFO] Spark Project GraphX ............................... SUCCESS [  8.543 s]
[INFO] Spark Project Streaming ............................ SUCCESS [ 21.891 s]
[INFO] Spark Project Catalyst ............................. SUCCESS [01:15 min]
[INFO] Spark Project SQL .................................. SUCCESS [02:28 min]
[INFO] Spark Project ML Library ........................... SUCCESS [01:13 min]
[INFO] Spark Project Tools ................................ SUCCESS [  1.534 s]
[INFO] Spark Project Hive ................................. SUCCESS [ 56.505 s]
[INFO] Spark Project REPL ................................. SUCCESS [  5.497 s]
[INFO] Spark Project Assembly ............................. SUCCESS [  4.034 s]
[INFO] Spark Integration for Kafka 0.10 ................... SUCCESS [  6.713 s]
[INFO] Kafka 0.10+ Token Provider for Streaming ........... SUCCESS [  2.156 s]
[INFO] Kafka 0.10+ Source for Structured Streaming ........ SUCCESS [  9.314 s]
[INFO] Spark Project Examples ............................. SUCCESS [ 14.136 s]
[INFO] Spark Integration for Kafka 0.10 Assembly .......... SUCCESS [  3.357 s]
[INFO] Spark Avro ......................................... SUCCESS [  5.773 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time:  10:09 min
[INFO] Finished at: 2019-03-17T11:11:29+08:00
[INFO] ------------------------------------------------------------------------

Building a Runnable Distribution(编译可运行的分布式版本)

Spark提供了自动化的分布式编译脚本:./dev/make-distribution.sh

脚本各参数含义可以通过命令

./dev/make-distribution.sh --help

查看。

✘ stefan@localhost  ~/Documents/workspace/code/spark   master  ./dev/make-distribution.sh --help
+++ dirname ./dev/make-distribution.sh
++ cd ./dev/..
++ pwd
+ SPARK_HOME=/Users/didi/Documents/workspace/code/spark
+ DISTDIR=/Users/didi/Documents/workspace/code/spark/dist
+ MAKE_TGZ=false
+ MAKE_PIP=false
+ MAKE_R=false
+ NAME=none
+ MVN=/Users/didi/Documents/workspace/code/spark/build/mvn
+ ((  1  ))
+ case $1 in
+ exit_with_usage
+ echo 'make-distribution.sh - tool for making binary distributions of Spark'
make-distribution.sh - tool for making binary distributions of Spark
+ echo ''

+ echo usage:
usage:
+ cl_options='[--name] [--tgz] [--pip] [--r] [--mvn <mvn-command>]'
+ echo 'make-distribution.sh [--name] [--tgz] [--pip] [--r] [--mvn <mvn-command>] <maven build options>'
make-distribution.sh [--name] [--tgz] [--pip] [--r] [--mvn <mvn-command>] <maven build options>
+ echo 'See Spark'\''s "Building Spark" doc for correct Maven options.'
See Spark's "Building Spark" doc for correct Maven options.
+ echo ''

+ exit 1

编译命令

./dev/make-distribution.sh --name custom-spark --pip --r --tgz -Psparkr -Phadoop-2.7 -Phive -Phive-thriftserver -Pmesos -Pyarn -Pkubernetes

上述命令会编译spark分发包,Python pip 和R包。执行前,请确认本地安装了R。

Specifying the Hadoop Version and Enabling YARN(指定Hadoop版本并启用YARN)

可以通过hadoop.version参数指定Hadoop编译版本,如果不指定,Spark将默认使用Hadoop2.6.X版本编译。
编译命令

# Apache Hadoop 2.6.X
./build/mvn -Pyarn -DskipTests clean package

# Apache Hadoop 2.7.X and later
./build/mvn -Pyarn -Phadoop-2.7 -Dhadoop.version=2.7.7 -DskipTests clean package

building...

✘ stefan@localhost  ~/Documents/workspace/code/spark   master  ./build/mvn -Pyarn -Phadoop-2.7 -Dhadoop.version=2.7.7 -DskipTests clean package
Using `mvn` from path: /Users/didi/Documents/workspace/code/spark/build/apache-maven-3.6.0/bin/mvn
[WARNING]
[WARNING] Some problems were encountered while building the effective toolchains
[WARNING] expected START_TAG or END_TAG not TEXT (position: TEXT seen ...</toolchain>\n   \n  -->z\n\n</... @103:3)  @ line 103, column 3
[WARNING]
[INFO] Scanning for projects...
...
[INFO] Reactor Summary for Spark Project Parent POM 3.0.0-SNAPSHOT:
[INFO]
[INFO] Spark Project Parent POM ........................... SUCCESS [  4.564 s]
[INFO] Spark Project Tags ................................. SUCCESS [  8.780 s]
[INFO] Spark Project Sketch ............................... SUCCESS [  6.256 s]
[INFO] Spark Project Local DB ............................. SUCCESS [  5.063 s]
[INFO] Spark Project Networking ........................... SUCCESS [  8.652 s]
[INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [  4.215 s]
[INFO] Spark Project Unsafe ............................... SUCCESS [  7.210 s]
[INFO] Spark Project Launcher ............................. SUCCESS [01:07 min]
[INFO] Spark Project Core ................................. SUCCESS [02:13 min]
[INFO] Spark Project ML Local Library ..................... SUCCESS [  6.008 s]
[INFO] Spark Project GraphX ............................... SUCCESS [  8.864 s]
[INFO] Spark Project Streaming ............................ SUCCESS [ 22.931 s]
[INFO] Spark Project Catalyst ............................. SUCCESS [01:35 min]
[INFO] Spark Project SQL .................................. SUCCESS [02:23 min]
[INFO] Spark Project ML Library ........................... SUCCESS [01:17 min]
[INFO] Spark Project Tools ................................ SUCCESS [  0.616 s]
[INFO] Spark Project Hive ................................. SUCCESS [01:09 min]
[INFO] Spark Project REPL ................................. SUCCESS [  7.165 s]
[INFO] Spark Project YARN Shuffle Service ................. SUCCESS [  9.303 s]
[INFO] Spark Project YARN ................................. SUCCESS [ 24.783 s]
[INFO] Spark Project Assembly ............................. SUCCESS [  3.523 s]
[INFO] Spark Integration for Kafka 0.10 ................... SUCCESS [  7.028 s]
[INFO] Kafka 0.10+ Token Provider for Streaming ........... SUCCESS [  1.989 s]
[INFO] Kafka 0.10+ Source for Structured Streaming ........ SUCCESS [  9.736 s]
[INFO] Spark Project Examples ............................. SUCCESS [ 14.508 s]
[INFO] Spark Integration for Kafka 0.10 Assembly .......... SUCCESS [  3.328 s]
[INFO] Spark Avro ......................................... SUCCESS [  7.217 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time:  12:39 min
[INFO] Finished at: 2019-03-17T13:17:52+08:00
[INFO] ------------------------------------------------------------------------

Building With Hive and JDBC Support(支持Hive和JDBC编译)

集成Spark SQL,Hive和JDBC,如果不指定,将默认绑定Hive 1.2.1编译。

编译命令

# With Hive 1.2.1 support
./build/mvn -Pyarn -Phive -Phive-thriftserver -DskipTests clean package

building...

 stefan@localhost  ~/Documents/workspace/code/spark   master  ./build/mvn -Pyarn -Phive -Phive-thriftserver -DskipTests clean package
Using `mvn` from path: /Users/didi/Documents/workspace/code/spark/build/apache-maven-3.6.0/bin/mvn
[WARNING]
[WARNING] Some problems were encountered while building the effective toolchains
[WARNING] expected START_TAG or END_TAG not TEXT (position: TEXT seen ...</toolchain>\n   \n  -->z\n\n</... @103:3)  @ line 103, column 3
[WARNING]
[INFO] Scanning for projects...
...
[INFO] Reactor Summary for Spark Project Parent POM 3.0.0-SNAPSHOT:
[INFO]
[INFO] Spark Project Parent POM ........................... SUCCESS [  4.719 s]
[INFO] Spark Project Tags ................................. SUCCESS [  8.717 s]
[INFO] Spark Project Sketch ............................... SUCCESS [  6.270 s]
[INFO] Spark Project Local DB ............................. SUCCESS [  3.983 s]
[INFO] Spark Project Networking ........................... SUCCESS [  7.893 s]
[INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [  4.385 s]
[INFO] Spark Project Unsafe ............................... SUCCESS [  6.898 s]
[INFO] Spark Project Launcher ............................. SUCCESS [  5.493 s]
[INFO] Spark Project Core ................................. SUCCESS [02:13 min]
[INFO] Spark Project ML Local Library ..................... SUCCESS [ 10.281 s]
[INFO] Spark Project GraphX ............................... SUCCESS [ 10.138 s]
[INFO] Spark Project Streaming ............................ SUCCESS [ 26.678 s]
[INFO] Spark Project Catalyst ............................. SUCCESS [02:23 min]
[INFO] Spark Project SQL .................................. SUCCESS [04:46 min]
[INFO] Spark Project ML Library ........................... SUCCESS [01:21 min]
[INFO] Spark Project Tools ................................ SUCCESS [  1.319 s]
[INFO] Spark Project Hive ................................. SUCCESS [01:04 min]
[INFO] Spark Project REPL ................................. SUCCESS [  5.929 s]
[INFO] Spark Project YARN Shuffle Service ................. SUCCESS [  6.662 s]
[INFO] Spark Project YARN ................................. SUCCESS [ 21.103 s]
[INFO] Spark Project Hive Thrift Server ................... SUCCESS [ 21.623 s]
[INFO] Spark Project Assembly ............................. SUCCESS [  3.794 s]
[INFO] Spark Integration for Kafka 0.10 ................... SUCCESS [  6.660 s]
[INFO] Kafka 0.10+ Token Provider for Streaming ........... SUCCESS [  2.034 s]
[INFO] Kafka 0.10+ Source for Structured Streaming ........ SUCCESS [  8.895 s]
[INFO] Spark Project Examples ............................. SUCCESS [ 14.781 s]
[INFO] Spark Integration for Kafka 0.10 Assembly .......... SUCCESS [  3.565 s]
[INFO] Spark Avro ......................................... SUCCESS [  5.989 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time:  15:08 min
[INFO] Finished at: 2019-03-17T13:46:54+08:00
[INFO] ------------------------------------------------------------------------

Packaging without Hadoop Dependencies for YARN(不包含hadoop依赖的yarn打包)

采用hadoop-provided profile编译时,会排除hadoop依赖进行编译打包。
编译命令

./build/mvn -Dhadoop-provided -DskipTests clean package

building

stefan@localhost  ~/Documents/workspace/code/spark   master  ./build/mvn -Dhadoop-provided -DskipTests clean package
Using `mvn` from path: /Users/didi/Documents/workspace/code/spark/build/apache-maven-3.6.0/bin/mvn
[WARNING]
[WARNING] Some problems were encountered while building the effective toolchains
[WARNING] expected START_TAG or END_TAG not TEXT (position: TEXT seen ...</toolchain>\n   \n  -->z\n\n</... @103:3)  @ line 103, column 3
[WARNING]
[INFO] Scanning for projects...
[INFO] ------------------------------------------------------------------------
...
[INFO] Reactor Summary for Spark Project Parent POM 3.0.0-SNAPSHOT:
[INFO]
[INFO] Spark Project Parent POM ........................... SUCCESS [  5.056 s]
[INFO] Spark Project Tags ................................. SUCCESS [  8.136 s]
[INFO] Spark Project Sketch ............................... SUCCESS [  5.885 s]
[INFO] Spark Project Local DB ............................. SUCCESS [  4.064 s]
[INFO] Spark Project Networking ........................... SUCCESS [ 13.564 s]
[INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [  6.083 s]
[INFO] Spark Project Unsafe ............................... SUCCESS [ 16.586 s]
[INFO] Spark Project Launcher ............................. SUCCESS [  6.701 s]
[INFO] Spark Project Core ................................. SUCCESS [02:19 min]
[INFO] Spark Project ML Local Library ..................... SUCCESS [  7.171 s]
[INFO] Spark Project GraphX ............................... SUCCESS [  9.424 s]
[INFO] Spark Project Streaming ............................ SUCCESS [ 32.804 s]
[INFO] Spark Project Catalyst ............................. SUCCESS [01:31 min]
[INFO] Spark Project SQL .................................. SUCCESS [02:52 min]
[INFO] Spark Project ML Library ........................... SUCCESS [01:41 min]
[INFO] Spark Project Tools ................................ SUCCESS [  0.879 s]
[INFO] Spark Project Hive ................................. SUCCESS [01:14 min]
[INFO] Spark Project REPL ................................. SUCCESS [  4.553 s]
[INFO] Spark Project Assembly ............................. SUCCESS [  4.331 s]
[INFO] Spark Integration for Kafka 0.10 ................... SUCCESS [ 10.777 s]
[INFO] Kafka 0.10+ Token Provider for Streaming ........... SUCCESS [  2.870 s]
[INFO] Kafka 0.10+ Source for Structured Streaming ........ SUCCESS [ 26.260 s]
[INFO] Spark Project Examples ............................. SUCCESS [ 25.948 s]
[INFO] Spark Integration for Kafka 0.10 Assembly .......... SUCCESS [  4.794 s]
[INFO] Spark Avro ......................................... SUCCESS [  8.309 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time:  13:03 min
[INFO] Finished at: 2019-03-17T14:13:57+08:00
[INFO] ------------------------------------------------------------------------

至此,我们演示了几种常用的编译方式。

测试成功

开启spark-shell

✘ didi@localhost  ~/Documents/workspace/code/spark   master  ./bin/spark-shell
19/03/17 13:58:02 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://bogon:4040
Spark context available as 'sc' (master = local[*], app id = local-1552805589600).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 3.0.0-SNAPSHOT
      /_/

Using Scala version 2.12.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_181)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

成功打开spark-shell交互界面,说明编译成功。
后面我们将介绍如何在本地进行Spark本地源码的开发测试。
参考:http://spark.apache.org/docs/latest/building-spark.html

相关文章

  • Spark2.4.0 源码编译

    Spark源码编译 源码下载 从github上下载最新版本spark源码https://github.com/ap...

  • Spark2.4.2源码编译

    一、Spark2.4.0源码下载下载地址:https://archive.apache.org/dist/spar...

  • 编译移植Android ARM源码

    [TOC] 编译移植Android ARM源码 android源码编译的四个流程:1. 源码下载; 2. 构建编译...

  • lua 源码编译

    lua 源码编译 本文介绍了使用 Visual Studio 编译 lua 源码的方法。 下载源码 源码下载在 这...

  • WebRTC研究 (一) 编译源码

    @[TOC](WebRTC研究 (一) 编译源码) 1. WebRTC 源码编译 1.1 IOS平台编译 1.1....

  • python深入系列(一):python源码运行流程

    源码编译 要看懂源码,肯定要学会编译源码。先去官网下载源码文件,然后解压编译安装。linux环境下进解压目录依次运...

  • JVM内存模型与数据结构

    JAVA代码执行过程 JAVA源码编译由三个过程组成:源码编译机制、类加载机制、类执行机制。代码编译由JAVA源码...

  • WebRTC for Android-源码编译篇

    目录 编译环境搭建 代码同步 编译参数配置 源码编译 踩过的问题 总结 一、编译环境搭建 首先,WebRTC源码编...

  • ijkplayer(一) 编译

    源码获取 源码拉取 错误 解决 查看分支 分支切换 2 android 编译 2.1 源码编译 2.1.1 根目录...

  • 002-【Spring】源码编译

    Spring源码编译 1、理解编译过程 1)Spring源码依赖gradle进行编译 2)不同版本的Spring依...

网友评论

      本文标题:Spark2.4.0 源码编译

      本文链接:https://www.haomeiwen.com/subject/zfuymqtx.html