Spark的Shuffle操作对应到Spark运行过程中会引起Shuffle的算子,比如join, repartition,reduceByKey等;
Spark的Shuffle过程中Reducer的数量要依据具体的算子来确定。有的算子可以具体Reducer的个数,比如repartition(100),会对应启动100个Reducer任务;有的算子则需要内部逻辑确定Reducer的个数,比如reduceByKey则会依据数据的Key关键字来规划Reducer的数量。
Spark中Shuffle类的都有哪些呢?参考如下:
去重类算子
def distinct()
def distinct(numPartitions: Int)
聚合类算子
def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]
def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)]
def groupBy[K](f: T => K, p: Partitioner):RDD[(K, Iterable[V])]
def groupByKey(partitioner: Partitioner):RDD[(K, Iterable[V])]
def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner): RDD[(K, U)]
def aggregateByKey[U: ClassTag](zeroValue: U, numPartitions: Int): RDD[(K, U)]
def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C): RDD[(K, C)]
def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, numPartitions: Int): RDD[(K, C)]
def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, partitioner: Partitioner, mapSideCombine: Boolean =true, serializer: Serializer =null): RDD[(K, C)]
排序类算子
def sortByKey(ascending: Boolean =true, numPartitions: Int = self.partitions.length): RDD[(K, V)]
def sortBy[K](f: (T) => K, ascending: Boolean =true, numPartitions: Int =this.partitions.length)(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]
重分区类算子
def coalesce(numPartitions: Int, shuffle: Boolean =false, partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
def repartition(numPartitions: Int)(implicit ord: Ordering[T] =null)
集合或者表操作类算子
def intersection(other: RDD[T]): RDD[T]
def intersection(other: RDD[T], partitioner: Partitioner)(implicit ord: Ordering[T] =null): RDD[T]
def intersection(other: RDD[T], numPartitions: Int): RDD[T]
def subtract(other: RDD[T], numPartitions: Int): RDD[T]
def subtract(other: RDD[T], p: Partitioner)(implicit ord: Ordering[T] =null): RDD[T]
def subtractByKey[W: ClassTag](other: RDD[(K, W)]): RDD[(K, V)]
def subtractByKey[W: ClassTag](other: RDD[(K, W)], numPartitions: Int): RDD[(K, V)]
def subtractByKey[W: ClassTag](other: RDD[(K, W)], p: Partitioner): RDD[(K, V)]
def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))]
def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]
def join[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (V, W))]
def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]
#
网友评论