美文网首页
Popov超稳定性在模型参考自适应(MRAS)中的应用

Popov超稳定性在模型参考自适应(MRAS)中的应用

作者: SmartFish | 来源:发表于2020-05-07 13:17 被阅读0次

符号说明

  • 与参考文献2中一致

Popov超稳定性概述1

对于连续时间线性定常系统,超稳定性成立的条件有两个:

  1. 输入输出积分满足Popov积分不等式:
    \int_{0}^{T}u^T(t)y(t)dt\leq\delta(||x(0)||)sup_{0\leq t \leq T}||x(t)||
  2. 传递函数矩阵满足正实性。

在MRAS中的应用,以PMSM参数辨识为例

在参考文献2中,可以看到本身模型参考自适应原理比较简单,只是对于控制器设计和稳定性证明比较麻烦,用到了Popov超稳定性理论来设计控制器。
首先,参考模型选择与源模型相同,构造了一误差系统,只要保证该误差系统的状态变量收敛到0,则电机参数即可估计出来。
\dot{e}=(A+G)e+\Delta A\hat{i}+\Delta Bu+\Delta C
其中e为误差矢量,e = i - \hat{i}, i = \left[ \begin{matrix} i_d & i_q \end{matrix} \right]^T, \Delta A = A - \hat{A}, \Delta B = B - \hat{B}, \Delta C = C - \hat{C}。取w = -(\Delta A\hat{i}+\Delta Bu+\Delta C),则有:
\dot{e}=(A+G)e-w
通过设计G来保证系统传递函数矩阵严格正实3,设计-w来保证满足输入输出Popov积分不等式。在该系统中,有A = \left[ \begin{matrix} -a & w_e\\ -w_e & -a \end{matrix} \right], \hat{A} = \left[ \begin{matrix} -\hat{a} & w_e\\ -w_e & -\hat{a} \end{matrix} \right], B = \left[ \begin{matrix} b & 0\\ 0 & b \end{matrix} \right], \hat{B} = \left[ \begin{matrix} \hat{b} & 0\\ 0 & \hat{b} \end{matrix} \right], C = \left[ \begin{matrix} 0 & -w_ec \end{matrix} \right]^T, \hat{C} = \left[ \begin{matrix} 0 & -w_e\hat{c} \end{matrix} \right]^T,取\hat{a}, \hat{b}, \hat{c}均为PI类型的控制器,有:
\hat{a}=\int_{0}^{t}f_1(\tau)d\tau + f_2(t) + \hat{a}(0) \\ \hat{b}=\int_{0}^{t}g_1(\tau)d\tau + g_2(t) + \hat{b}(0) \\ \hat{c}=\int_{0}^{t}h_1(\tau)d\tau + h_2(t) + \hat{c}(0)
将上\hat{a},\hat{b},\hat{c}计算式带入到Popov积分不等式中,其中u(t)即为误差系统中的-wy(t)则为误差系统中的e,借助matlab符号运算,即可得到化简后的Popov积分不等式如下:
\int_{0}^{T}e_qw_e(c-\hat{c}) + (e_q\hat{i_q}+e_d\hat{i_d})(a-\hat{a}) - (e_qu_q + e_du_d)(b-\hat{b})dt \geq -\gamma_0^2 \\ \Rightarrow \\ \int_{0}^{T}e_qw_e(c-(\int_{0}^{t}h_1(\tau)d\tau + h_2(t) + \hat{c}(0)))dt \\ + \int_{0}^{T}(e_q\hat{i_q}+e_d\hat{i_d})(a-(\int_{0}^{t}f_1(\tau)d\tau + f_2(t) + \hat{a}(0)))dt \\ - \int_{0}^{T}(e_qu_q + e_du_d)(b-(\int_{0}^{t}g_1(\tau)d\tau + g_2(t) + \hat{b}(0)))dt \\ \geq -\gamma_0^2
其中,\gamma_0为一误差系统中与系统变量(即误差e)初值相关的量。e_d=i_d-\hat{i_d},e_q=i_q-\hat{i_q}可以看到,要满足上式,即使:
\int_{0}^{T}e_qw_e(c-(\int_{0}^{t}h_1(\tau)d\tau + h_2(t) + \hat{c}(0)))dt \geq -\gamma_1^2 \\ \int_{0}^{T}(e_q\hat{i_q}+e_d\hat{i_d})(a-(\int_{0}^{t}f_1(\tau)d\tau + f_2(t) + \hat{a}(0)))dt \geq -\gamma_2^2 \\ \int_{0}^{T}(e_qu_q + e_du_d)(b-(\int_{0}^{t}g_1(\tau)d\tau + g_2(t) + \hat{b}(0)))dt \geq -\gamma_3^2
均满足即可。以上三式中第一个不等式为例,将其拆开,可以得到:
\int_{0}^{T}e_qw_e(c-\int_{0}^{t}h_1(\tau)d\tau - \hat{c}(0))dt \geq -\gamma_{11}^2 \\ \int_{0}^{T}-e_qw_eh_2(t)dt \geq -\gamma_{12}^2
均满足即可。对于上两式中的第一式,可以利用如下不等式:
\int_{0}^{T}\frac{df(t)}{dt}kf(t)dt=\frac{k}{2}[f^2(T)-f^2(0)] \geq \frac{k}{2}f^2(0)
\frac{df(t)}{dt} =e_qw_e, kf(t)=c-\int_{0}^{t}h_1(\tau)d\tau - \hat{c}(0),则可以得到:
h_1(t)=-e_qw_eK_{hi},K_{hi} \geq 0
而对于上两式中的第二式,可以直接取h_2(t)=-K_{hp}e_qw_e即可保证不等式成立:
h_2(t)=-K_{hp}e_qw_e,K_{hp} \geq 0
因此,对于\hat{c}的控制率可以选择:
\hat{c}=-K_{hi}\int_{0}^{t}e_q(\tau)w_ed\tau - K_{hp}e_q(t)w_e + \hat{c}(0)
即可保证误差系统满足Popov超稳定性条件。使用同样的方法,即可得到\hat{a}与\hat{b}的控制率如下:
\hat{a}=-K_{fi}\int_{0}^{t}(\hat{i_d}(\tau)e_d(\tau)+\hat{i_q}(\tau)e_q(\tau))d\tau - K_{fp}(\hat{i_d}(\tau)e_d(\tau)+\hat{i_q}(\tau)e_q(\tau)) + \hat{a}(0) \\ \hat{b}=K_{gi}\int_{0}^{t}(u_d(\tau)e_d(\tau)+u_q(\tau)e_q(\tau))d\tau + K_{gp}(u_d(t)e_d(t)+u_q(t)e_q(t)) + \hat{b}(0)

Note

值得注意的是,文献2中利用MRAS同时辨识出三个电机参数,但实际上系统模型的阶数仅为两阶,因此个人觉得应该是有些许错误,在实际仿真时也印证了这一点:只有两个参数时辨识才准确,若三个参数同时辨识,结果将不准确。

参考文献

<div id="refer-anchor-1"></div>

<div id="refer-anchor-2"></div>

  • [2] Quntao An and Li Sun, "On-line parameter identification for vector controlled PMSM drives using adaptive algorithm," 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, 2008, pp. 1-6, doi: 10.1109/VPPC.2008.4677634.

<div id="refer-anchor-3"></div>

  • [3] Xu Junfeng, Xu Yinglei, Xu jiangping, et al. “A new control method for permanent magnet synchronous machines with observer”, Aachen Germany: 35th IEEE Power Electronics Specialists Conference, 2004.

附录

  • matlab公式化简源码
clc;
clear all;
syms a b c A B C Ag Bg Cg e dltA dltB dltC i ig we id iq idg iqg ag bg cg e ud uq u real
A = [-a we;-we -a]
Ag = [-ag we;-we -ag]
B = [b 0;0 b]
Bg = [bg 0;0 bg]
C = [0;-we*c]
Cg = [0;-we*cg]
dltA = A - Ag
dltB = B - Bg
dltC = C - Cg
i = [id;iq]
ig = [idg;iqg]
e = i - ig
u = [ud;uq]
clc
-(dltA*ig + dltB*u + dltC)' * e

相关文章

网友评论

      本文标题:Popov超稳定性在模型参考自适应(MRAS)中的应用

      本文链接:https://www.haomeiwen.com/subject/zhaoghtx.html