我接触很多人3年甚至多年的时间都仅仅停留在入门,但他们自我感觉是资深,仔细想一想以下六类人可能不适合做数据分析。
1、不善于思考的
其实数据分析的精髓在于思考,无论是出报表、还是做报告,其实都是希望通过这些看似杂乱无章的数据给我们带来一些价值,而这个价值的衡量的出发点其实就是思考,简而言之,就是你要用数据干什么?等有一天你想清楚了这个问题,你的思维也会变得更有逻辑。
比如领导让你出一份经营分析报告,那你就要思考,由下往上思考,整体会涉及哪些指标,这些指标背后的含义是什么?这些指标能不能分类?分类的标准是什么?比如分类的标准是整体收入、发展趋势、用户表现、品类管理、库存状况等,然后再思考,例如整体收入这块,我要用这个分类的那些指标做对比、哪些做预测、那些做结构,分别要告诉决策者什么问题,目前好不好的问题?未来好不好的问题?现在现在的状态问题?这一来二去雏形不就有了吗?这种方式相对而言,难度较大,要会归纳总结,还要会给一级、二级、三级框架造词,说人话那种。
还有一种是由上而下,这类思考取决于分析师的项目经验,做过的话,很容易提炼出诱人的大纲,再根据大纲敲定每个部分的分析框架,然后去思考选取那些指标,什么样式的分析方法更能传达你要表达的信息,这类企业很喜欢,来了有是成熟的模版,直接干活。
2、太相信假数据的
很多时候你会发现,当你看一份报告的时候,你被别的的ppt水平、可视化技能、文字的巧妙所吸引,而很少会思考,数据采集的方式是什么?是否能够代表整个行业?指标提炼的逻辑是什么?与我想要的有什么区别,可信度是多少?
对于超出自己范围的数据要多渠道去验证,不能盲目的信从,比如媒体报道中的数据,什么离婚率、就业率、薪资等,要多来源验证、追问、质疑,有人会说,研究这些和我做的业务没关系呀,其实不是,这是一种对待数据的态度和习惯。
比如当你计算一个kpi完成率时,你会发现很多指标年年都好,但最终的财务指标基本没有任何变化,为什么?你质疑过吗?
考核的指标一般都是层层下压,为了完成kpi,基层也是绞尽脑汁。正所谓上有政策下有对策,执行中必然会被扭曲。
尼尔·波兹曼说过:过去人们是为了解决生活中的问题而搜寻信息,现在是为了让无用的信息派上用场而制造问题。
3、不善于沟通的
数据分析师常常在程序员、决策者之间进行徘徊,上游是决策者,下游是程序员,要是没有有效的沟通,你很理解决策者到底想要什么?要是没有沟通你很难得到自己想要的数据形式?有数据和给你什么样式的数据差异很大的
我见过很多人分析的框架和决策者想要的结合很完美,但找程序员要数据时,傻眼了,自己挖了个大坑,想分析没数据。
也见过很多人未能和it准确有效的沟通,提出来一张自己用现有能力无法玩转的一张表
更见过很多元数据理解的很清楚,但输出分析框架时,受现有数据资源影响过大,打不开思维,导致输出与决策者完全不符的分析结果。
这是一个博弈的过程,一定要沟通,决策者的问题是没有边界的,但你、决策者、it之间的沟通是可以让其有边境的。
4、动手能力差的
有2个方面,一方面是自学路上动手能力差,比如工具类的问题,经常问来问去,其实有时候自己动手搜索一下,你会发现世界真美好,这是搜索的强项,人脑记忆肯定干不过电脑。
另一个方面是自己缺乏练习,很多人学课程,看书,从来不自己操作,老想寻找一些面试题、某企业级数据集拿来分析一下,看看自己的水平,要对胃口的数据集其实很少的,即使有,也是美化版的,很多综合性的演练你还是学不到的,还不如随便爬一些数据,越乱越好(对练习工具操作有巨大好处),然后在现有数据的基础上看看可以分析出什么?希望告诉别人什么?需不需要再补充一些数据,让结论更有说服力,更细致一些。
要是仅仅是看,那你确实不适合做数据分析
5、连excel都用不好的
有人会说,你胡扯吧,我们都用python,我只能告诉你,你还是没有清楚认识到数据分析,没有python前,大家都不做数据分析吗?请好好思考一下
如果你仔细观察,你会发现5年以上的数据分析师,90%都用的excel,10%的工作环境可能是python、sql、spark、kettle等。
不是所有人,所有分析师都要面对所谓的海量数据,目前的趋势已经是数据统计智能化了,部分做专题分析会复杂一些,但一般大的专题是要一个团队一起完成的,比如简单的决策者+业务+it+分析师,所以很多时候it是可以帮你搞定的,会有人问,自己要是会的话,不是更香?那就要看你喜欢工具带来的快感,还是升职加薪带来的成就感了。
6、从来不复盘的
数据分析是一个很难成长的职业,有的人入行很多年还用的是入行时的那套分析逻辑,为何?
一直没找到自己不对的地方,今天看点文章觉得思路好,下次加进报告,明天又看一个课程说的这块不错,下次再改进一下,但你有没有想过,你的这些举动其实是在消除焦虑,怕自己跟不上时代。
好的分析经验一定是复盘出来的,分析最终都是要看疗效的,那其实做业务分析的可以很直观看到自己输出对关键指标的影响。
这时候可能会有一部分人说,我是做运营分析的,我如何复盘?做运营分析的目的是什么?发现问题,那发现问题的目的就是尽量让这个问题按照我们的线路走,变的可控,变的可确定,那是不是需要一套跟进的流程和监督方式呢?另外发现问题与发现好问题,这也是一个值得复盘的方向。
这里面我始终没有说学历、专业、性别,在我看来这些都不是关键,分析思维是人类天生都有的,就看能不能激发出来。
你去买菜会考虑走那条路吧?路径分配分析
你去买菜会做价格对比吧?参照物分析
你去买菜会考虑买什么吧?需求分析
你去买菜会看别人买什么吧?用户分析
你去买菜会考虑去那个市场吧?综合评估分析
源:数师兄
网友评论