美文网首页
深度学习 | 监督学习中分类和回归的本质是一致的?

深度学习 | 监督学习中分类和回归的本质是一致的?

作者: yuanCruise | 来源:发表于2019-01-01 19:06 被阅读29次

1.监督学习

所谓监督学习,顾名思义其有两个核心概念组成:“监督”+“学习”。

  • 学习:与传统意义的学习概念一样,在监督学习中,所谓学习指的就是通过一次次的思考并改正错误,从而获取正确的知识,最终达到学习的目的。
  • 监督:与传统意义的监督概念也一样,在监督学习中,所谓监督指的就是当前的学习过程是受到监督的,当你产生错误时,监督者会告诉你当前发生了错误,并且要求你往正确的方向学习。

上述概念中提到的学习,那么这个过程中究竟在学习怎么样的知识呢?下图直观的展示了这个学习过程究竟在学习什么。如图所示,展示的是给出一个n维的向量X,经过一个盒子,最终输出一个向量Y的过程。该过程主要学习的就是红色问号部分的映射规则。映射规则就是指盒子对输入所做的操作。而监督学习的核心就是利用监督的手段来学习得到这个映射规则,从而得到一个无人的智能系统。该系统能够根据给定的输入,输出符合规则的输出。当前火热的基于有监督的深度学习,其实做的就是这件事情。

而当前很火的机器学习、深度学习模型,(如VGG16,VGG19,Inception,ResNet等等网络模型)就是对图中的盒子构建的数学模型。并通过类似于梯度下降的策略来进行模型参数的学习,最终得到一个基于模型和参数的黑盒,用于实现所谓的智能决策。

2.分类和回归

如上图所示,在监督学习中,输入经过盒子决策后得到输出。而对于分类和回归问题,该输出的形式存在差异。该差异对应着深度学习,机器学习所对应的落地场景。比如解决图像分类任务,那么就要应用分类网络;若解决预测类问题,那么就要应用回归网络。
分类与回归,这两者都属于监督学习的范畴,都是学习的方法。之所以会去两个不同的名字,就是因为其对应的输出值形式不同,仅此而已。对于回归任务其输出值是连续的实数值,而对于分类任务其输出值为离散的类别数。因此这两者的本质是一样的,仅仅是输出形式不同而已。当然由于其输出形式不同,在构建误差函数(就是监督系统中的使得盒子往正确答案发展的驱动装置)时会有区分,这里对于分类和回归的误差函数的设计不多做介绍,后续会单独聊一聊。

利用一个例子来更好的解释,分类与回归的本质是一致的。
举例:解决一个简单的水果分类问题。假设当前的水果种类有:苹果,西瓜,桃子和葡萄四种,对应的类别标签(监督值)为0,1,2,3。假设当前给定的训练数据集中的输入特征为一个二维向量X=(颜色,大小),训练数据集中的输出(监督值)为对应种类的类别值(0,1,2,3)。要求我们设计一个网络模型,使得该模型能够根据任意的二维向量,得到对应的类别输出。

正常情况下,我们很容易想到利用监督学习中的分类策略来解决当前问题,这很直观就不做解释。而当前问题中,为了解释分类与回归的本质其实是一致的,我们尝试是否可以用回归的策略来解决这个分类问题?答案是肯定的。

已知当前的训练集中输入为二维向量X=(颜色,大小),训练数据集中的输出(监督值)为对应的种类的类别值(0,1,2,3)。利用回归任务解决当前问题时,我们将0,1,2,3这几个数字看做是一系列连续的实数值中的几个,而不认为类别标签。因此利用回归网络仍然可以训练当前模型。我们会认为网络输出的实数值更加接近于哪个数字,来驱动网络的学习。当然显而易见利用回归的方法得到的结果必定比不过分类策略。本文仅仅想告知分类和回归的本质是一致的,其区别仅仅是输出形式不同而已。

Note:上述关于分类和回归的本质,并没有得到过多理论上的验证,仅仅是本人的臆想以及实验尝试,所以仅供参考,且有不同观点欢迎批评指正。

相关文章

  • 深度学习 | 监督学习中分类和回归的本质是一致的?

    1.监督学习 所谓监督学习,顾名思义其有两个核心概念组成:“监督”+“学习”。 学习:与传统意义的学习概念一样,在...

  • Types of Machine Learning: Super

    1. 监督学习 or 无监督学习 2. 监督学习 2.1 分类 2.2 回归 2.3 监督学习:分类 & 回归...

  • 机器学习一基本概念

    1 监督学习 分类 回归 2 非监督学习 聚类 3 深度学习 4 强化学习 5 迁移学习 a 小数据问题 b...

  • 机器学习的分类

    分类: 目前机器学习主流分为:监督学习,无监督学习,强化学习。 监督学习: 监督学习可分为“回归”和“分类”问题。...

  • 神经网络:什么是深度学习

    深度学习说白了就是机器学习中的神经网络。 相关知识:分类、回归 分类和回归是机器学习中两个非常重要的问题。 在分类...

  • 机器学习方式分类以及计算机视觉任务分类(研究方向)

    按学习方式分类 监督学习(Supervised Learning)常用于分类问题和回归问题 无监督学习(Unsup...

  • 《机器学习》1.基础知识

    机器学习 组成 主要任务 分类:将数据划分类别。回归:主要用于预测。分类和回归属于监督学习。无监督学习:聚类,密度...

  • 深度学习的一些基本概念(一)

    申明:非原创,转载自《有监督学习、无监督学习、分类、聚类、回归等概念》 有监督学习、无监督学习、分类、聚类、回归等...

  • 机器学习的类型

    二元分类、多元分类、回归、结构化学习、······ 监督学习、非监督学习、半监督学习、强化学习、······ 成批...

  • 传统机器学习算法(一)

    本章节主要介绍机器学习传统算法的监督学习部分。监督学习算法主要解决回归和分类两大问题。只能做回归的算法是线性回归,...

网友评论

      本文标题:深度学习 | 监督学习中分类和回归的本质是一致的?

      本文链接:https://www.haomeiwen.com/subject/zhlnlqtx.html