美文网首页单细胞转录组
velociraptor || Bioconductor框架下的

velociraptor || Bioconductor框架下的

作者: 周运来就是我 | 来源:发表于2021-01-14 04:43 被阅读0次

    针对基因和细胞,单细胞转录组两个高级分析分别是:scenic和velocyto。这两个都是R和python都支持的,同时R的实现都不是十分完美。特别是velocyto,在R里面虽然有velocyto.R(win 10 似乎安装不上还) 但是限于计算平台和效率等,也往往使研究者困在第一步。针对这种情况,生物学家开发了velociraptor ,velociraptor 提供了Bioconductor的单细胞 SingleCellExperiment数据结构和用于RNA速度计算的Python 包 scvelo之间的轻量级接口。该接口可与许多其他SingleCellExperiment兼容,允许用户将RNA速度整合到现有的Bioconductor分析框架之中。

    velociraptor 内部是调用scvelo,所以在运行的时候会为您配置相应的python环境。所以可以想象,并没有理想的那么好用,且不说velocyto的输出是loom文件,既然在R里面调用python库为什么不直接用python分析呢?感兴趣的小伙伴可以尝试一下啦。

    一般有了教程之后,其实主要的工作是在做数据格式的转化,一波操作之后,发现velociraptor做出来的方向很是一致啊:

    这个显然是和数据有关系的,例如作者给的示例文件:

    library("velociraptor")
    library(scuttle)
    library(scater)
    sce1 <- mockSCE()
    sce2 <- mockSCE()
    
    spliced <- counts(sce1)
    spliced[1:4,1:4]
              Cell_001 Cell_002 Cell_003 Cell_004
    Gene_0001      406       97      119       14
    Gene_0002      270      225      470     1080
    Gene_0003       94       35      498       26
    Gene_0004      187      578       29        0
    > unspliced <- counts(sce2)
    > unspliced[1:4,1:4]
              Cell_001 Cell_002 Cell_003 Cell_004
    Gene_0001       32       73      285      233
    Gene_0002        0        0        5       66
    Gene_0003      455       27        6        0
    Gene_0004      200      812      453      749
    
    
    
    
    out2 <- scvelo(list(X=spliced, spliced=spliced, unspliced=unspliced))
    sce <- SingleCellExperiment(assays = list(counts = (spliced)))
    sce <- scater::logNormCounts(sce)
    sce <- scater::runPCA(sce)
    sce <- runTSNE(sce, dimred="PCA")
    sce$velocity_pseudotime <- out2$velocity_pseudotime
    plotTSNE(sce, colour_by="velocity_pseudotime")
    
    embedded <- embedVelocity(reducedDim(sce, "TSNE"), out2)
    grid.df <- gridVectors(reducedDim(sce, "TSNE"), embedded)
    library(ggplot2)
    plotTSNE(sce, colour_by="velocity_pseudotime") +
      geom_segment(data=grid.df, mapping=aes(x=start.1, y=start.2, 
                                             xend=end.1, yend=end.2), arrow=arrow(length=unit(0.05, "inches"))) + theme_bw()
    

    https://kevinrue.github.io/velociraptor/index.html
    单细胞转录组数据分析|| scVelo 教程:RNA速率分析工具
    velocyto||sc-RNA速率:一种细胞轨迹推断方法

    相关文章

      网友评论

        本文标题:velociraptor || Bioconductor框架下的

        本文链接:https://www.haomeiwen.com/subject/zhluaktx.html