美文网首页tensowflowNLP深度学习
Bert系列(二)——源码解读之模型主体

Bert系列(二)——源码解读之模型主体

作者: 西溪雷神 | 来源:发表于2018-12-19 16:00 被阅读0次

    本篇文章主要是解读模型主体代码modeling.py。在阅读这篇文章之前希望读者们对bert的相关理论有一定的了解,尤其是transformer的结构原理,网上的资料很多,本文内容对原理部分就不做过多的介绍了。

    我自己写出来其中一个目的也是帮助自己学习整理、当你输出的时候才也会明白哪里懂了哪里不懂。因为水平有限,很多地方理解不到位的,还请各位批评指正。

    1、配置

    class BertConfig(object):
      """Configuration for `BertModel`."""
    
      def __init__(self,
                   vocab_size,
                   hidden_size=768,
                   num_hidden_layers=12,
                   num_attention_heads=12,
                   intermediate_size=3072,
                   hidden_act="gelu",
                   hidden_dropout_prob=0.1,
                   attention_probs_dropout_prob=0.1,
                   max_position_embeddings=512,
                   type_vocab_size=16,
                   initializer_range=0.02):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
    

    模型配置,比较简单,依次是:词典大小、隐层神经元个数、transformer的层数、attention的头数、激活函数、中间层神经元个数、隐层dropout比例、attention里面dropout比例、sequence最大长度、token_type_ids的词典大小、truncated_normal_initializer的stdev。

    2、word embedding

    def embedding_lookup(input_ids,
                         vocab_size,
                         embedding_size=128,
                         initializer_range=0.02,
                         word_embedding_name="word_embeddings",
                         use_one_hot_embeddings=False):
      if input_ids.shape.ndims == 2:
        input_ids = tf.expand_dims(input_ids, axis=[-1])
    
      embedding_table = tf.get_variable(
          name=word_embedding_name,
          shape=[vocab_size, embedding_size],
          initializer=create_initializer(initializer_range))
    
      if use_one_hot_embeddings:
        flat_input_ids = tf.reshape(input_ids, [-1])
        one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
        output = tf.matmul(one_hot_input_ids, embedding_table)
      else:
        output = tf.nn.embedding_lookup(embedding_table, input_ids)
    
      input_shape = get_shape_list(input_ids)
    
      output = tf.reshape(output,
                          input_shape[0:-1] + [input_shape[-1] * embedding_size])
      return (output, embedding_table)
    

    构造embedding_table,进行word embedding,可选one_hot的方式,返回embedding的结果和embedding_table

    3、词向量的后续处理

    def embedding_postprocessor(input_tensor,
                                use_token_type=False,
                                token_type_ids=None,
                                token_type_vocab_size=16,
                                token_type_embedding_name="token_type_embeddings",
                                use_position_embeddings=True,
                                position_embedding_name="position_embeddings",
                                initializer_range=0.02,
                                max_position_embeddings=512,
                                dropout_prob=0.1):
      input_shape = get_shape_list(input_tensor, expected_rank=3)
      batch_size = input_shape[0]
      seq_length = input_shape[1]
      width = input_shape[2]
      output = input_tensor
      if use_token_type:
        if token_type_ids is None:
          raise ValueError("`token_type_ids` must be specified if"
                           "`use_token_type` is True.")
        token_type_table = tf.get_variable(
            name=token_type_embedding_name,
            shape=[token_type_vocab_size, width],
            initializer=create_initializer(initializer_range))
        flat_token_type_ids = tf.reshape(token_type_ids, [-1])
        one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
        token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
        token_type_embeddings = tf.reshape(token_type_embeddings,
                                           [batch_size, seq_length, width])
        output += token_type_embeddings
      if use_position_embeddings:
        assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
        with tf.control_dependencies([assert_op]):
          full_position_embeddings = tf.get_variable(
              name=position_embedding_name,
              shape=[max_position_embeddings, width],
              initializer=create_initializer(initializer_range))
          position_embeddings = tf.slice(full_position_embeddings, [0, 0],
                                         [seq_length, -1])
          num_dims = len(output.shape.as_list())
          position_broadcast_shape = []
          for _ in range(num_dims - 2):
            position_broadcast_shape.append(1)
          position_broadcast_shape.extend([seq_length, width])
          position_embeddings = tf.reshape(position_embeddings,
                                           position_broadcast_shape)
          output += position_embeddings
      output = layer_norm_and_dropout(output, dropout_prob)
      return output
    

    主要是信息添加,可以将word的位置和word对应的token type等信息添加到词向量里面,并且layer正则化和dropout之后返回

    4、构造attention mask

    def create_attention_mask_from_input_mask(from_tensor, to_mask):
      from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
      batch_size = from_shape[0]
      from_seq_length = from_shape[1]
      to_shape = get_shape_list(to_mask, expected_rank=2)
      to_seq_length = to_shape[1]
      to_mask = tf.cast(
          tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)
      broadcast_ones = tf.ones(
          shape=[batch_size, from_seq_length, 1], dtype=tf.float32)
      mask = broadcast_ones * to_mask
      return mask
    

    将shape为[batch_size, to_seq_length]的2D mask转换为一个shape 为[batch_size, from_seq_length, to_seq_length] 的3D mask用于attention当中。

    5、attention layer

    def attention_layer(from_tensor,
                        to_tensor,
                        attention_mask=None,
                        num_attention_heads=1,
                        size_per_head=512,
                        query_act=None,
                        key_act=None,
                        value_act=None,
                        attention_probs_dropout_prob=0.0,
                        initializer_range=0.02,
                        do_return_2d_tensor=False,
                        batch_size=None,
                        from_seq_length=None,
                        to_seq_length=None):
      def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
                               seq_length, width):
        output_tensor = tf.reshape(
            input_tensor, [batch_size, seq_length, num_attention_heads, width])
    
        output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3])
        return output_tensor
    
      from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
      to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])
    
      if len(from_shape) != len(to_shape):
        raise ValueError(
            "The rank of `from_tensor` must match the rank of `to_tensor`.")
    
      if len(from_shape) == 3:
        batch_size = from_shape[0]
        from_seq_length = from_shape[1]
        to_seq_length = to_shape[1]
      elif len(from_shape) == 2:
        if (batch_size is None or from_seq_length is None or to_seq_length is None):
          raise ValueError(
              "When passing in rank 2 tensors to attention_layer, the values "
              "for `batch_size`, `from_seq_length`, and `to_seq_length` "
              "must all be specified.")
    
      # Scalar dimensions referenced here:
      #   B = batch size (number of sequences)
      #   F = `from_tensor` sequence length
      #   T = `to_tensor` sequence length
      #   N = `num_attention_heads`
      #   H = `size_per_head`
    
      from_tensor_2d = reshape_to_matrix(from_tensor)
      to_tensor_2d = reshape_to_matrix(to_tensor)
    
      # `query_layer` = [B*F, N*H]
      query_layer = tf.layers.dense(
          from_tensor_2d,
          num_attention_heads * size_per_head,
          activation=query_act,
          name="query",
          kernel_initializer=create_initializer(initializer_range))
    
      # `key_layer` = [B*T, N*H]
      key_layer = tf.layers.dense(
          to_tensor_2d,
          num_attention_heads * size_per_head,
          activation=key_act,
          name="key",
          kernel_initializer=create_initializer(initializer_range))
    
      # `value_layer` = [B*T, N*H]
      value_layer = tf.layers.dense(
          to_tensor_2d,
          num_attention_heads * size_per_head,
          activation=value_act,
          name="value",
          kernel_initializer=create_initializer(initializer_range))
    
      # `query_layer` = [B, N, F, H]
      query_layer = transpose_for_scores(query_layer, batch_size,
                                         num_attention_heads, from_seq_length,
                                         size_per_head)
    
      # `key_layer` = [B, N, T, H]
      key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
                                       to_seq_length, size_per_head)
    
      attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
      attention_scores = tf.multiply(attention_scores,
                                     1.0 / math.sqrt(float(size_per_head)))
    
      if attention_mask is not None:
        # `attention_mask` = [B, 1, F, T]
        attention_mask = tf.expand_dims(attention_mask, axis=[1])
    
        adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0
    
        attention_scores += adder
    
      attention_probs = tf.nn.softmax(attention_scores)
    
      attention_probs = dropout(attention_probs, attention_probs_dropout_prob)
    
      # `value_layer` = [B, T, N, H]
      value_layer = tf.reshape(
          value_layer,
          [batch_size, to_seq_length, num_attention_heads, size_per_head])
    
      # `value_layer` = [B, N, T, H]
      value_layer = tf.transpose(value_layer, [0, 2, 1, 3])
    
      # `context_layer` = [B, N, F, H]
      context_layer = tf.matmul(attention_probs, value_layer)
    
      # `context_layer` = [B, F, N, H]
      context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
    
      if do_return_2d_tensor:
        # `context_layer` = [B*F, N*V]
        context_layer = tf.reshape(
            context_layer,
            [batch_size * from_seq_length, num_attention_heads * size_per_head])
      else:
        # `context_layer` = [B, F, N*V]
        context_layer = tf.reshape(
            context_layer,
            [batch_size, from_seq_length, num_attention_heads * size_per_head])
    
      return context_layer
    

    整个网络的重头戏来了!tansformer的主要内容都在这里面,输入的from_tensor当作query,to_tensor当作key和value。当self attention的时候from_tensor和to_tensor是同一个值。

    (1)函数一开始对输入的shape进行校验,获取batch_size、from_seq_length 、to_seq_length 。输入如果是3D张量则转化成2D矩阵(以输入为word_embedding为例[batch_size, seq_lenth, hidden_size] -> [batch_size*seq_lenth, hidden_size])

    (2)通过全连接线性投影生成query_layer、key_layer 、value_layer,输出的第二个维度变成num_attention_heads * size_per_head(整个模型默认hidden_size=num_attention_heads * size_per_head)。然后通过transpose_for_scores转换成多头。

    (3)根据公式计算attention_probs(attention score):


    Attention Score计算公式

    如果attention_mask is not None,对mask的部分加上一个很大的负数,这样softmax之后相应的概率值接近为0,再dropout。

    (4)最后再将value和attention_probs相乘,返回3D张量或者2D矩阵

    总结:

    同学们可以将这段代码与网络结构图对照起来看:

    Attention Layer
    该函数相比其他版本的的transformer很多地方都有简化,有以下四点:

    (1)缺少scale的操作;

    (2)没有Causality mask,个人猜测主要是bert没有decoder的操作,所以对角矩阵mask是不需要的,从另一方面来说正好体现了双向transformer的特点;

    (3)没有query mask。跟(2)理由类似,encoder都是self attention,query和key相同所以只需要一次key mask就够了

    (4)没有query的Residual层和normalize

    6、Transformer

    def transformer_model(input_tensor,
                          attention_mask=None,
                          hidden_size=768,
                          num_hidden_layers=12,
                          num_attention_heads=12,
                          intermediate_size=3072,
                          intermediate_act_fn=gelu,
                          hidden_dropout_prob=0.1,
                          attention_probs_dropout_prob=0.1,
                          initializer_range=0.02,
                          do_return_all_layers=False):
      if hidden_size % num_attention_heads != 0:
        raise ValueError(
            "The hidden size (%d) is not a multiple of the number of attention "
            "heads (%d)" % (hidden_size, num_attention_heads))
    
      attention_head_size = int(hidden_size / num_attention_heads)
      input_shape = get_shape_list(input_tensor, expected_rank=3)
      batch_size = input_shape[0]
      seq_length = input_shape[1]
      input_width = input_shape[2]
    
      if input_width != hidden_size:
        raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
                         (input_width, hidden_size))
    
      prev_output = reshape_to_matrix(input_tensor)
    
      all_layer_outputs = []
      for layer_idx in range(num_hidden_layers):
        with tf.variable_scope("layer_%d" % layer_idx):
          layer_input = prev_output
    
          with tf.variable_scope("attention"):
            attention_heads = []
            with tf.variable_scope("self"):
              attention_head = attention_layer(
                  from_tensor=layer_input,
                  to_tensor=layer_input,
                  attention_mask=attention_mask,
                  num_attention_heads=num_attention_heads,
                  size_per_head=attention_head_size,
                  attention_probs_dropout_prob=attention_probs_dropout_prob,
                  initializer_range=initializer_range,
                  do_return_2d_tensor=True,
                  batch_size=batch_size,
                  from_seq_length=seq_length,
                  to_seq_length=seq_length)
              attention_heads.append(attention_head)
    
            attention_output = None
            if len(attention_heads) == 1:
              attention_output = attention_heads[0]
            else:
              attention_output = tf.concat(attention_heads, axis=-1)
            with tf.variable_scope("output"):
              attention_output = tf.layers.dense(
                  attention_output,
                  hidden_size,
                  kernel_initializer=create_initializer(initializer_range))
              attention_output = dropout(attention_output, hidden_dropout_prob)
              attention_output = layer_norm(attention_output + layer_input)
    
          with tf.variable_scope("intermediate"):
            intermediate_output = tf.layers.dense(
                attention_output,
                intermediate_size,
                activation=intermediate_act_fn,
                kernel_initializer=create_initializer(initializer_range))
    
          with tf.variable_scope("output"):
            layer_output = tf.layers.dense(
                intermediate_output,
                hidden_size,
                kernel_initializer=create_initializer(initializer_range))
            layer_output = dropout(layer_output, hidden_dropout_prob)
            layer_output = layer_norm(layer_output + attention_output)
            prev_output = layer_output
            all_layer_outputs.append(layer_output)
    
      if do_return_all_layers:
        final_outputs = []
        for layer_output in all_layer_outputs:
          final_output = reshape_from_matrix(layer_output, input_shape)
          final_outputs.append(final_output)
        return final_outputs
      else:
        final_output = reshape_from_matrix(prev_output, input_shape)
        return final_output
    

    transformer是对attention的利用,分以下几步:

    (1)计算attention_head_size,attention_head_size = int(hidden_size / num_attention_heads)即将隐层的输出等分给各个attention头。然后将input_tensor转换成2D矩阵;

    (2)对input_tensor进行多头attention操作,再做:线性投影——dropout——layer norm——intermediate线性投影——线性投影——dropout——attention_output的residual——layer norm

    其中intermediate线性投影的hidden_size可以自行指定,其他层的线性投影hidden_size需要统一,目的是为了对齐。

    (3)如此循环计算若干次,且保存每一次的输出,最后返回所有层的输出或者最后一层的输出。

    总结:

    进一步证实该函数transformer只存在encoder,而不存在decoder操作,所以所有层的多头attention操作都是基于self encoder的。对应论文红框的部分:

    The Transformer - model architecture

    7、BertModel

    class BertModel(object):
      def __init__(self,
                   config,
                   is_training,
                   input_ids,
                   input_mask=None,
                   token_type_ids=None,
                   use_one_hot_embeddings=True,
                   scope=None):
        config = copy.deepcopy(config)
        if not is_training:
          config.hidden_dropout_prob = 0.0
          config.attention_probs_dropout_prob = 0.0
    
        input_shape = get_shape_list(input_ids, expected_rank=2)
        batch_size = input_shape[0]
        seq_length = input_shape[1]
    
        if input_mask is None:
          input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)
    
        if token_type_ids is None:
          token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)
    
        with tf.variable_scope(scope, default_name="bert"):
          with tf.variable_scope("embeddings"):
            (self.embedding_output, self.embedding_table) = embedding_lookup(
                input_ids=input_ids,
                vocab_size=config.vocab_size,
                embedding_size=config.hidden_size,
                initializer_range=config.initializer_range,
                word_embedding_name="word_embeddings",
                use_one_hot_embeddings=use_one_hot_embeddings)
    
            self.embedding_output = embedding_postprocessor(
                input_tensor=self.embedding_output,
                use_token_type=True,
                token_type_ids=token_type_ids,
                token_type_vocab_size=config.type_vocab_size,
                token_type_embedding_name="token_type_embeddings",
                use_position_embeddings=True,
                position_embedding_name="position_embeddings",
                initializer_range=config.initializer_range,
                max_position_embeddings=config.max_position_embeddings,
                dropout_prob=config.hidden_dropout_prob)
    
          with tf.variable_scope("encoder"):
            attention_mask = create_attention_mask_from_input_mask(
                input_ids, input_mask)
    
            self.all_encoder_layers = transformer_model(
                input_tensor=self.embedding_output,
                attention_mask=attention_mask,
                hidden_size=config.hidden_size,
                num_hidden_layers=config.num_hidden_layers,
                num_attention_heads=config.num_attention_heads,
                intermediate_size=config.intermediate_size,
                intermediate_act_fn=get_activation(config.hidden_act),
                hidden_dropout_prob=config.hidden_dropout_prob,
                attention_probs_dropout_prob=config.attention_probs_dropout_prob,
                initializer_range=config.initializer_range,
                do_return_all_layers=True)
    
          self.sequence_output = self.all_encoder_layers[-1]
          with tf.variable_scope("pooler"):
            first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
            self.pooled_output = tf.layers.dense(
                first_token_tensor,
                config.hidden_size,
                activation=tf.tanh,
                kernel_initializer=create_initializer(config.initializer_range))
    

    终于到模型入口了。

    (1)设置各种参数,如果input_mask为None的话,就指定所有input_mask值为1,即不进行过滤;如果token_type_ids是None的话,就指定所有token_type_ids值为0;

    (2)对输入的input_ids进行embedding操作,再embedding_postprocessor操作,前面我们说了。主要是加入位置和token_type信息到词向量里面;

    (3)转换attention_mask 后,通过调用transformer_model进行encoder操作;

    (4)获取最后一层的输出sequence_output和pooled_output,pooled_output是取sequence_output的第一个切片然后线性投影获得(可以用于分类问题)

    8、总结:

    (1)bert主要流程是先embedding(包括位置和token_type的embedding),然后调用transformer得到输出结果,其中embedding、embedding_table、所有transformer层输出、最后transformer层输出以及pooled_output都可以获得,用于迁移学习的fine-tune和预测任务;

    (2)bert对于transformer的使用仅限于encoder,没有decoder的过程。这是因为模型存粹是为了预训练服务,而预训练是通过语言模型,不同于NLP其他特定任务。在做迁移学习时可以自行添加;

    (3)正因为没有decoder的操作,所以在attention函数里面也相应地减少了很多不必要的功能。

    其他非主要函数这里不做过多介绍,感兴趣的同学可以去看源码。

    下一篇文章我们将继续学习bert源码的其他模块,包括训练、预测以及输入输出等相关功能。

    本文上一篇系列

    Bert系列(一)——demo运行
    Bert系列(三)——源码解读之Pre-train
    Bert系列(四)——源码解读之Fine-tune
    Bert系列(五)——中文分词实践 F1 97.8%(附代码)

    Reference

    1.https://github.com/google-research/bert/blob/master/modeling.py

    2.https://github.com/Kyubyong/transformer

    3.Attention Is All You Need

    4.BERT: Pre-training of Deep Bidirectional Transformers for
    Language Understanding

    相关文章

      网友评论

        本文标题:Bert系列(二)——源码解读之模型主体

        本文链接:https://www.haomeiwen.com/subject/zhvdkqtx.html