美文网首页
高等数学(十二)多元积分学及其应用

高等数学(十二)多元积分学及其应用

作者: AdRainty | 来源:发表于2021-08-21 00:02 被阅读0次

    第一节 三重积分

    (一)定义

    \iiint_{\varOmega}{f\left( x,y,z \right) \text{d}v}=\lim_{\lambda \rightarrow 0}\sum_{i=1}^n{f\left( \xi _i,\eta _i,\zeta _i \right) \Delta v_i}

    (二)计算

    1、直角坐标

    \iiint_{\varOmega}{f\left( x,y,z \right) \text{d}x\text{d}y\text{d}z}=\int_a^b{\left\{ \int_{y_1\left( x \right)}^{y_2\left( x \right)}{\left[ \int_{z_1\left( x,y \right)}^{z_2\left( x,y \right)}{f\left( x,y \right) \text{d}z} \right] \text{d}y} \right\}}\text{d}x

    2、柱坐标

    \left\{ \begin{array}{l} x=\rho \cos \theta\\ y=\rho \sin \theta\\ z=z\\ \end{array} \right.

    dv=\rho d\rho d\theta dz

    \iiint_{\varOmega}{f\left( x,y,z \right) \text{d}v}=\iiint_{\varOmega}{f\left( \rho \cos \theta ,\rho \sin \theta ,z \right) \rho d\rho d\theta dz}

    3、球坐标

    \left\{ \begin{array}{l} x=r\sin \varphi \cos \theta\\ y=r\sin \varphi \sin \theta\\ z=r\cos \varphi\\ \end{array} \right.

    dV=r^2\sin \varphi drd\varphi d\theta

    \iiint_{\varOmega}{f\left( x,y,z \right) \text{d}v}=\iiint_{\varOmega}{f\left( r\sin \varphi \cos \theta ,r\sin \varphi \sin \theta ,r\cos \varphi \right) r^2\sin \varphi drd\varphi d\theta}

    4、利用奇偶性

    若积分域Ω关于xOy坐标面对称
    \iiint_{\varOmega}{f\left( x,y,z \right) \text{d}v}=\left\{ \begin{array}{l} 2\iiint_{\varOmega z\ge 0}{f\left( x,y,z \right) \text{d}v,f\left( x,y,z \right) \text{关于}z\text{是偶函数}}\\ 0,f\left( x,y,z \right) \text{关于}z\text{是奇函数}\\ \end{array} \right.

    第二节 曲线积分

    (一)对弧长的线积分(第一类线积分)

    1、定义

    \int_L{f\left( x,y \right) \text{d}s}=\lim_{\lambda \rightarrow 0}\sum_{i=1}^n{f\left( \xi _i,\eta _i \right) \Delta s_i}

    2、性质

    与路径方向无关,即
    \int_{L\left( {AB} \right)}{f\left( x,y \right) \text{d}s}=\int_{L\left({BA} \right)}{f\left( x,y \right) \text{d}s}

    3、计算方法

    (1)直接法

    L:\left\{ \begin{array}{l} x=\varphi \left( t \right)\\ y=\psi \left( t \right)\\ \end{array} \right. ,\,\,\alpha \le t\le \beta


    \int_L{f\left( x,y \right) \text{d}s}=\int_{\alpha}^{\beta}{f\left[ \varphi \left( t \right) ,\psi \left( t \right) \right] \sqrt{\left[ \varphi '\left( t \right) \right] ^2+\left[ \psi '\left( t \right) \right] ^2}\text{d}t}

    L:y=y\left( x \right) ,a\le x\le b


    \int_L{f\left( x,y \right) \text{d}s}=\int_a^b{f\left[ x,y\left( x \right) \right] \sqrt{1+\left[ y'\left( t \right) \right] ^2}\text{d}x}

    L:\rho =\rho \left( \theta \right) ,\alpha \le \theta \le \beta


    \int_L{f\left( x,y \right) \text{d}s}=\int_{\alpha}^{\beta}{f\left( \rho \cos \theta ,\rho \sin \theta \right) \sqrt{\rho ^2+\rho '^2}\text{d}\theta}

    (2)利用奇偶对称性

    \int_L{f\left( x,y \right) \text{d}s}=\int_L{f\left( y,x \right) \text{d}s}

    特别地
    \int_L{f\left( x \right) \text{d}s}=\int_L{f\left( y \right) \text{d}s}

    (3)空间曲线

    若空间曲线
    x=x\left( t \right) ,y=y\left( t \right) ,z=z\left( t \right) ,\alpha \le t\le \beta

    \int_L{f\left( x,y,z \right) \text{d}s=}\int_{\alpha}^{\beta}{f\left( x,y,z \right) \sqrt{x'^2+y'^2+z'^2}\text{d}t}

    (二)对坐标的线积分(第二类线积分)

    1、定义

    \int_L{\left[ P\left( x,y \right) \text{d}x+Q\left( x,y \right) \right] \text{d}y}=\lim_{\lambda \rightarrow 0}\sum_{i=1}^n{\left[ P\left( \xi _i,\eta _i \right) \Delta x_i+Q\left( \xi _i,\eta _i \right) \Delta y_i \right]}

    2、性质

    与路线方向有关,即
    \int_{L\left( AB \right)}{Pdx+Q\text{d}y}=-\int_{L\left( BA \right)}{Pdx+Q\text{d}y}

    3、计算方法(平面)

    (1)直接法


    L:\left\{ \begin{array}{l} x=\varphi \left( t \right)\\ y=\psi \left( t \right)\\ \end{array} \right. ,\,\,\alpha \le t\le \beta

    \int_L{P\left( x,y \right) \text{d}x+Q\left( x,y \right) \text{d}y}=\int_{\alpha}^{\beta}{\left\{ P\left[ \varphi \left( t \right) ,\psi \left( t \right) \right] \varphi '\left( t \right) +Q\left[ \varphi \left( t \right) ,\psi \left( t \right) \right] \psi '\left( t \right) \right\}}\text{d}t

    (2)格林公式

    \iint_D{\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) \text{d}x\text{d}y}=\oint_L{P\text{d}x+Q\text{d}y}

    (3)补线用格林公式

    (4)利用线积分与路径无关

    • 判定

    \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}

    • 计算
    1. 改换路径

    \int_{\left( x_!,y_1 \right)}^{\left( x_2,y_2 \right)}{Pdx+Qdy}=\int_{x_1}^{x_2}{P\left( x,y_1 \right) dx+}\int_{y_1}^{y_2}{P\left( x_2,y \right) dx}


    \int_{\left( x_!,y_1 \right)}^{\left( x_2,y_2 \right)}{Pdx+Qdy}=\int_{y_1}^{y_2}{P\left( x_1,y \right) dx+}\int_{x_1}^{x_2}{P\left( x,y_2 \right) dx}

    1. 利用原函数

    \int_{\left( x_!,y_1 \right)}^{\left( x_2,y_2 \right)}{Pdx+Qdy}=F\left( x_2,y_2 \right) -F\left( x_1,y_1 \right)

    4、两类线积分的联系

    \text{d}\boldsymbol{r}=\text{d}x\boldsymbol{i}+\text{d}y\boldsymbol{j}
    \text{d}s=\sqrt{\left( \text{d}x \right) ^2+\left( \text{d}y \right) ^2}
    \int_L{P\left( x,y \right) \text{d}x+Q\left( x,y \right) \text{d}y}=\int_L{\left[ P\left( x,y \right) \cos \alpha +Q\left( x,y \right) \cos \beta \right] \text{d}s}

    5、计算方法(空间)

    斯托克斯公式
    \iint_{\varSigma}{\left( \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z} \right) \text{d}y\text{d}z+\left( \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x} \right) \text{d}z\text{d}x+\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) \text{d}x\text{d}y}=\oint_{\varGamma}{P\text{d}x+Q\text{d}y+R\text{d}z}
    \iint_{\varSigma}{\left| \begin{matrix} \cos \alpha& \cos \beta& \cos \gamma\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ P& Q& R\\ \end{matrix} \right|}\text{d}S=\oint_{\varGamma}{P\text{d}x+Q\text{d}y+R\text{d}z}

    \text{其中}\boldsymbol{n}=\left( \cos \alpha ,\cos \beta ,\cos \gamma \right) \text{为有向曲面}\varSigma \text{在点}\left( x,y,z \right) \text{处的单位法向量}

    第三节 曲面积分

    (一)对面积的面积分(第一类面积分)

    1、 定义

    \iint_S{f\left( x,y,z \right) \text{d}S}=\lim_{\lambda \rightarrow 0}\sum_{i=1}^n{f\left( \xi _i,\eta _i,\zeta _i \right) \Delta S_i}

    2、性质

    \iint_S{f\left( x,y,z \right) \text{d}S}=\iint_{-S}{f\left( x,y,z \right) \text{d}S}

    3、 计算方法

    S:z=z\left( x,y \right) ,\left( x,y \right) \in D
    \iint_S{f\left( x,y,z \right) \text{d}S}=\iint_{D_{xy}}{f\left[ x,y,z\left( x,y \right) \right] \sqrt{1+z_x^2+z_y^2}\text{d}x\text{d}y}

    (二)对坐标的面积分(第二类面积分)

    1、定义

    \iint_{\varSigma}{R\left( x,y,z \right) \text{d}x\text{d}y}=\lim_{\lambda \rightarrow 0}\sum_{i=1}^n{R\left( \xi _i,\eta _i,\zeta _i \right) \left( \Delta S_i \right) _{xy}}

    2、性质

    \iint_{\varSigma}{P\left( x,y,z \right) \text{d}y\text{d}z}+\iint_{\varSigma}{Q\left( x,y,z \right) \text{d}z\text{d}x}+\iint_{\varSigma}{R\left( x,y,z \right) \text{d}x\text{d}y}=\iint_{\varSigma}{P\left( x,y,z \right) \text{d}y\text{d}z+Q\left( x,y,z \right) \text{d}z\text{d}x+R\left( x,y,z \right) \text{d}x\text{d}y}

    3、计算方法

    (1)直接法

    • 设曲面

    \varSigma :z=z\left( x,y \right) ,\left( x,y \right) \in D


    \iint_{\varSigma}{R\left( x,y,z \right) \text{d}x\text{d}y}=\pm \iint_{D_{xy}}{R\left[ x,y,z\left( x,y \right) \right] \text{d}x\text{d}y}

    • 设曲面

    \varSigma :x=x\left( y,z \right) ,\left( y,z \right) \in D


    \iint_{\varSigma}{P\left( x,y,z \right) \text{d}x\text{d}y}=\pm \iint_{D_{yz}}{P\left[ x\left( y,z \right) ,y,z \right] \text{d}y\text{d}z}

    • 设曲面

    \varSigma :y=y\left( z,x \right) ,\left( z,x \right) \in D


    \iint_{\varSigma}{Q\left( x,y,z \right) \text{d}x\text{d}y}=\pm \iint_{D_{zx}}{Q\left[ x,y\left( z,x \right) ,z \right] \text{d}z\text{d}x}

    (2)高斯公式

    \iiint_{\varOmega}{\left( \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} \right) \text{d}v}=\oiint_{\varSigma}{P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y}

    第四节 场论初步

    (一)方向导数

    1、定义

    \frac{\partial f}{\partial l}\left| \left( x_0,y_0 \right) \right. =\underset{t\rightarrow 0^+}{\lim}\frac{f\left( x_0+t\cos \alpha ,y_0+t\cos \beta \right) -f\left( x_0,y_0 \right)}{t}

    2、计算

    z=f\left( x,y \right)可微,则
    \frac{\partial f}{\partial l}=\frac{\partial f}{\partial x}\cos \alpha +\frac{\partial f}{\partial y}\cos \beta

    (二)梯度

    \boldsymbol{A}=\left\{ P,Q,R \right\}
    \boldsymbol{grad\ z}=\frac{\partial u}{\partial x}\boldsymbol{i}+\frac{\partial u}{\partial y}\boldsymbol{j}+\frac{\partial u}{\partial z}\boldsymbol{k}

    (三)散度

    \boldsymbol{divA}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}

    (四)旋度

    \mathbf{rot}\boldsymbol{A}=\mathbf{\nabla }\times \boldsymbol{A}=\left| \begin{matrix} \boldsymbol{i}& \boldsymbol{j}& \boldsymbol{k}\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ P& Q& R\\ \end{matrix} \right|

    相关文章

      网友评论

          本文标题:高等数学(十二)多元积分学及其应用

          本文链接:https://www.haomeiwen.com/subject/zhxebltx.html