美文网首页
Three.js中OutlinePass与后处理冲突问题

Three.js中OutlinePass与后处理冲突问题

作者: ShawnWeasley | 来源:发表于2023-06-28 10:19 被阅读0次

    需求是鼠标滑过物体的时候物体显示为描边选中状态

    方案一:OutlinePass

    首先尝试了官方的OutlinePass来添加外边框选中功能
    这是没加OutlinePass的效果:



    这是使用OutlinePass后的,描边是可以了,但是锯齿严重,且模型发黑:


    深入调研了一下发现是OutlinePass与renderer.outputEncoding = THREE.sRGBEncoding冲突,不支持sRGBEncoding,这个问题尚且还能通过一些材质参数调节能调到原来的色调,但是OutlinePass还跟下面的抗锯齿antialias: true冲突。

    const renderer = new THREE.WebGLRenderer({
        canvas: canvas,
        antialias: true
    })
    

    本以为是后处理跟这些冲突,结果发现不是后处理的问题,就只是OutlinePass的问题。

    继续深入调研了一下,发现OutlinePass根本就是个深坑,完全无法用,网上能搜到的方案也仅仅是再加一层fxaa,我试过了,即便再加一层ssaa都达不到antialias: true的效果,所以OutlinePass的方案就完全放弃了。
    这是OutlinePass参考代码:

    import './style.css'
    import * as THREE from 'three'
    import {OrbitControls} from 'three/examples/jsm/controls/OrbitControls.js'
    import {GLTFLoader} from 'three/examples/jsm/loaders/GLTFLoader.js'
    import {DRACOLoader} from 'three/examples/jsm/loaders/DRACOLoader.js'
    import {EffectComposer} from 'three/examples/jsm/postprocessing/EffectComposer.js';
    import {RenderPass} from 'three/examples/jsm/postprocessing/RenderPass.js';
    import {OutlinePass} from 'three/examples/jsm/postprocessing/OutlinePass.js';
    
    const sizes = {
        width: window.innerWidth,
        height: window.innerHeight
    }
    
    const canvas = document.querySelector('canvas.webgl')
    
    const renderer = new THREE.WebGLRenderer({
        canvas: canvas,
        antialias: true
    })
    renderer.outputEncoding = THREE.sRGBEncoding
    renderer.setSize(sizes.width, sizes.height)
    renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2))
    const scene = new THREE.Scene()
    scene.background = new THREE.Color(0xF5F5F5)
    let camera = new THREE.PerspectiveCamera(10, sizes.width / sizes.height, 0.1, 100)
    camera.position.z = -12
    scene.add(camera)
    const light = new THREE.AmbientLight(0xffffff);
    scene.add(light);
    
    const controls = new OrbitControls(camera, canvas)
    controls.enableDamping = true
    
    const dracoLoader = new DRACOLoader()
    dracoLoader.setDecoderPath('draco/')
    const gltfLoader = new GLTFLoader()
    gltfLoader.setDRACOLoader(dracoLoader)
    
    window.addEventListener('resize', () => {
        sizes.width = window.innerWidth
        sizes.height = window.innerHeight
    
        camera.aspect = sizes.width / sizes.height;
        camera.updateProjectionMatrix()
    
        renderer.setSize(sizes.width, sizes.height)
        renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2))
    
        composer.setSize(sizes.width, sizes.height);
        outlinePass.resolution.set(sizes.width, sizes.height);
    })
    
    let model;
    controls.model = model;
    
    gltfLoader.load(
        'Skeleton-processed.glb',
        (gltf) => {
            model = gltf.scene
            scene.add(model)
            model.traverse(function (child) {
                if (child.isMesh) {
                    child.frustumCulled = false
                    // child.texture.encoding = THREE.sRGBEncoding;
                    // child.material.color.convertLinearToSRGB();
                    // child.material.emissive.convertLinearToSRGB();
                    child.material.emissive = new THREE.Color(0xffffff); // 设置发光颜色
                    child.material.emissiveIntensity = 0.16; // 设置发光强度
                }
            });
        }
    )
    
    // add after defining renderer
    const composer = new EffectComposer(renderer);
    
    const renderPass = new RenderPass(scene, camera);
    composer.addPass(renderPass);
    
    const outlinePass = new OutlinePass(new THREE.Vector2(window.innerWidth, window.innerHeight), scene, camera);
    composer.addPass(outlinePass);
    outlinePass.visibleEdgeColor = new THREE.Color(0xffa522); // 设置橙色
    outlinePass.edgeStrength = 5; // 将描边的强度设置为 0,即无发光效果
    outlinePass.edgeGlow = 0; // 将描边的发光强度设置为 0
    outlinePass.usePatternTexture = false; // 禁用纹理以获得纯线的效果
    
    const tick = () => {
        controls.update()
        // renderer.render(scene, camera)
        composer.render()
        window.requestAnimationFrame(tick)
    }
    tick()
    
    
    // Add the following to the mouseover event:
    const raycaster = new THREE.Raycaster();
    const mouse = new THREE.Vector2();
    
    window.addEventListener('mousemove', (event) => {
        event.preventDefault();
    
        mouse.x = (event.clientX / window.innerWidth) * 2 - 1;
        mouse.y = -(event.clientY / window.innerHeight) * 2 + 1;
    
        raycaster.setFromCamera(mouse, camera);
    
        const intersects = raycaster.intersectObjects(scene.children, true);
    
        if (intersects.length > 0) {
            const selectedObject = intersects[0].object;
            outlinePass.selectedObjects = [selectedObject];
        } else {
            outlinePass.selectedObjects = [];
        }
    }, false);
    

    方案二:Sobel算子

    转头想起图像处理的Sobel算子也可以用来实现描边,折腾半天改了示例项目的shader才实现。
    效果是有了,但是锯齿严重多了,本想着反正选中也就一个物体,锯齿就锯齿吧,结果傻眼了,Sobel是基于全屏计算的,无法只描边一个物体。要只显示一个选中的物体,还得折腾,得新开一个renderer,效率就更不用说了,后面肯定很多坑,所以也放弃了这个方案。


    参考代码:

    import './style.css'
    import * as THREE from 'three'
    import {OrbitControls} from 'three/examples/jsm/controls/OrbitControls.js'
    import {GLTFLoader} from 'three/examples/jsm/loaders/GLTFLoader.js'
    import {DRACOLoader} from 'three/examples/jsm/loaders/DRACOLoader.js'
    import {EffectComposer} from 'three/examples/jsm/postprocessing/EffectComposer.js';
    import {RenderPass} from 'three/examples/jsm/postprocessing/RenderPass.js';
    import {ShaderPass} from 'three/examples/jsm/postprocessing/ShaderPass.js';
    import {SobelOperatorShader} from 'three/examples/jsm/shaders/SobelOperatorShader.js';
    
    
    const sizes = {
        width: window.innerWidth,
        height: window.innerHeight
    }
    
    const canvas = document.querySelector('canvas.webgl')
    
    const renderer = new THREE.WebGLRenderer({
        canvas: canvas,
        antialias: true
    })
    // renderer.outputEncoding = THREE.sRGBEncoding
    renderer.setSize(sizes.width, sizes.height)
    // renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2))
    const scene = new THREE.Scene()
    scene.background = new THREE.Color(0xF5F5F5)
    let camera = new THREE.PerspectiveCamera(10, sizes.width / sizes.height, 0.1, 100)
    camera.position.z = -12
    scene.add(camera)
    const light = new THREE.AmbientLight(0xffffff);
    scene.add(light);
    
    const controls = new OrbitControls(camera, canvas)
    controls.enableDamping = true
    
    const dracoLoader = new DRACOLoader()
    dracoLoader.setDecoderPath('draco/')
    const gltfLoader = new GLTFLoader()
    gltfLoader.setDRACOLoader(dracoLoader)
    
    window.addEventListener('resize', () => {
        sizes.width = window.innerWidth
        sizes.height = window.innerHeight
    
        camera.aspect = sizes.width / sizes.height;
        camera.updateProjectionMatrix()
    
        renderer.setSize(sizes.width, sizes.height)
        renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2))
    
        composer.setSize(sizes.width, sizes.height);
        composer.setPixelRatio(Math.min(window.devicePixelRatio, 2));
    
    })
    
    let model;
    controls.model = model;
    
    gltfLoader.load(
        'Skeleton-processed.glb',
        (gltf) => {
            model = gltf.scene
            scene.add(model)
            model.traverse(function (child) {
                if (child.isMesh) {
                    child.frustumCulled = false
                    // child.texture.encoding = THREE.sRGBEncoding;
                    // child.material.color.convertLinearToSRGB();
                    // child.material.emissive.convertLinearToSRGB();
                }
            });
        }
    )
    
    const composer = new EffectComposer(renderer);
    composer.setSize(sizes.width, sizes.height);
    composer.setPixelRatio(Math.min(window.devicePixelRatio, 2));
    
    const renderPass = new RenderPass(scene, camera);
    composer.addPass(renderPass);
    
    
    const tick = () => {
        controls.update()
        // renderer.render(scene, camera)
        composer.render()
        window.requestAnimationFrame(tick)
    }
    tick()
    
    const outlinePass = new ShaderPass(SobelOperatorShader);
    // outlinePass.hiddenEdgeColor.set(0xff0000); // 设置描边的颜色
    // outlinePass.visibleEdgeColor.set(0x000000); // 设置背景色
    
    outlinePass.uniforms.resolution.value.x = sizes.width;
    outlinePass.uniforms.resolution.value.y = sizes.height;
    composer.addPass(outlinePass);
    
    const raycaster = new THREE.Raycaster();
    const mouse = new THREE.Vector2();
    
    window.addEventListener('mousemove', (event) => {
        event.preventDefault();
    
        mouse.x = (event.clientX / sizes.width) * 2 - 1;
        mouse.y = -(event.clientY / sizes.height) * 2 + 1;
    
        raycaster.setFromCamera(mouse, camera);
    
        const intersects = raycaster.intersectObjects(scene.children, true);
    
        if (intersects.length > 0) {
            const selectedObject = intersects[0].object;
            outlinePass.selectedObjects = [selectedObject];
        } else {
            outlinePass.selectedObjects = [];
        }
    });
    

    需要同时修改import {SobelOperatorShader} from 'three/examples/jsm/shaders/SobelOperatorShader.js';的shader最后输出颜色的步骤:

    import {
        Vector2
    } from 'three';
    
    /**
     * Sobel Edge Detection (see https://youtu.be/uihBwtPIBxM)
     *
     * As mentioned in the video the Sobel operator expects a grayscale image as input.
     *
     */
    
    const SobelOperatorShader = {
    
        uniforms: {
    
            'tDiffuse': {value: null},
            'resolution': {value: new Vector2()}
    
        },
    
        vertexShader: /* glsl */`
    
            varying vec2 vUv;
    
            void main() {
    
                vUv = uv;
    
                gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
    
            }`,
    
        fragmentShader: /* glsl */`
    
            uniform sampler2D tDiffuse;
            uniform vec2 resolution;
            varying vec2 vUv;
    
            void main() {
    
                vec2 texel = vec2( 1.0 / resolution.x, 1.0 / resolution.y );
    
            // kernel definition (in glsl matrices are filled in column-major order)
    
                const mat3 Gx = mat3( -1, -2, -1, 0, 0, 0, 1, 2, 1 ); // x direction kernel
                const mat3 Gy = mat3( -1, 0, 1, -2, 0, 2, -1, 0, 1 ); // y direction kernel
    
            // fetch the 3x3 neighbourhood of a fragment
    
            // first column
    
                float tx0y0 = texture2D( tDiffuse, vUv + texel * vec2( -1, -1 ) ).r;
                float tx0y1 = texture2D( tDiffuse, vUv + texel * vec2( -1,  0 ) ).r;
                float tx0y2 = texture2D( tDiffuse, vUv + texel * vec2( -1,  1 ) ).r;
    
            // second column
    
                float tx1y0 = texture2D( tDiffuse, vUv + texel * vec2(  0, -1 ) ).r;
                float tx1y1 = texture2D( tDiffuse, vUv + texel * vec2(  0,  0 ) ).r;
                float tx1y2 = texture2D( tDiffuse, vUv + texel * vec2(  0,  1 ) ).r;
    
            // third column
    
                float tx2y0 = texture2D( tDiffuse, vUv + texel * vec2(  1, -1 ) ).r;
                float tx2y1 = texture2D( tDiffuse, vUv + texel * vec2(  1,  0 ) ).r;
                float tx2y2 = texture2D( tDiffuse, vUv + texel * vec2(  1,  1 ) ).r;
    
            // gradient value in x direction
    
                float valueGx = Gx[0][0] * tx0y0 + Gx[1][0] * tx1y0 + Gx[2][0] * tx2y0 +
                    Gx[0][1] * tx0y1 + Gx[1][1] * tx1y1 + Gx[2][1] * tx2y1 +
                    Gx[0][2] * tx0y2 + Gx[1][2] * tx1y2 + Gx[2][2] * tx2y2;
    
            // gradient value in y direction
    
                float valueGy = Gy[0][0] * tx0y0 + Gy[1][0] * tx1y0 + Gy[2][0] * tx2y0 +
                    Gy[0][1] * tx0y1 + Gy[1][1] * tx1y1 + Gy[2][1] * tx2y1 +
                    Gy[0][2] * tx0y2 + Gy[1][2] * tx1y2 + Gy[2][2] * tx2y2;
    
            // magnitute of the total gradient
    
                float G = sqrt( ( valueGx * valueGx ) + ( valueGy * valueGy ) );
    
                //gl_FragColor = vec4( vec3( G ), 1 );
                // gl_FragColor = vec4( vec3( G > 0.5 ? 1.0 : 0.0 ), 1 );
                vec4 originalColor = texture2D(tDiffuse, vUv);
                vec4 outlineColor = vec4(1.0, 0.0, 0.0, 1.0);  // 描边的颜色,这里使用红色
            
                
        // 判断当前像素是否属于描边区域,如果是则显示描边颜色,否则显示原始颜色
        vec4 finalColor = mix(originalColor, outlineColor, smoothstep(0.5, 0.51, G));
    
        gl_FragColor = finalColor;
            }`
    
    };
    
    export {SobelOperatorShader};
    

    方案三:菲涅尔

    想起来用菲涅尔也可以实现接近描边的选中效果,虽然不那么完美吧,可以进一步尝试优化优化,代码如下:

    import './style.css'
    import * as THREE from 'three'
    import {OrbitControls} from 'three/examples/jsm/controls/OrbitControls.js'
    import {GLTFLoader} from 'three/examples/jsm/loaders/GLTFLoader.js'
    import {DRACOLoader} from 'three/examples/jsm/loaders/DRACOLoader.js'
    
    //region 场景初始化
    const sizes = {
        width: window.innerWidth,
        height: window.innerHeight
    }
    
    const canvas = document.querySelector('canvas.webgl')
    
    const renderer = new THREE.WebGLRenderer({
        canvas: canvas,
        antialias: true
    })
    renderer.outputEncoding = THREE.sRGBEncoding
    renderer.setSize(sizes.width, sizes.height)
    renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2))
    
    const scene = new THREE.Scene()
    scene.background = new THREE.Color(0xF5F5F5)
    let camera = new THREE.PerspectiveCamera(10, sizes.width / sizes.height, 0.1, 100)
    camera.position.z = -12
    scene.add(camera)
    const light = new THREE.AmbientLight(0xffffff, 1);
    scene.add(light);
    
    const controls = new OrbitControls(camera, canvas)
    controls.enableDamping = true
    
    
    window.addEventListener('resize', () => {
        sizes.width = window.innerWidth
        sizes.height = window.innerHeight
    
        camera.aspect = sizes.width / sizes.height;
        camera.updateProjectionMatrix()
    
        renderer.setSize(sizes.width, sizes.height)
        renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2))
    
    })
    //endregion
    
    //region 模型加载
    const dracoLoader = new DRACOLoader()
    dracoLoader.setDecoderPath('draco/')
    const gltfLoader = new GLTFLoader()
    gltfLoader.setDRACOLoader(dracoLoader)
    let model;
    controls.model = model;
    gltfLoader.load(
        'Skeleton-processed.glb',
        (gltf) => {
            model = gltf.scene
            scene.add(model)
            model.traverse(function (child) {
                if (child.isMesh) {
                    child.frustumCulled = false
                    child.updateMatrixWorld(true)
                }
            });
        }
    )
    //endregion
    
    //region 选中状态射线检测
    const raycaster = new THREE.Raycaster();
    let selectedObject = null;
    window.addEventListener('mousemove', (event) => {
        camera.updateMatrixWorld(true)
        raycaster.setFromCamera({
            x: (event.clientX / sizes.width) * 2 - 1,
            y: -(event.clientY / sizes.height) * 2 + 1
        }, camera);
    });
    //endregion
    
    //region 选中状态下的材质
    let uniformsRim = {
        rimColor: {value: new THREE.Color(0x2200ee)},
        rimPower: {value: 1.0},
    }
    const rimMaterial = new THREE.MeshStandardMaterial();
    rimMaterial.onBeforeCompile = function (shader) {
        shader.uniforms.rimColor = uniformsRim.rimColor;
        shader.uniforms.rimPower = uniformsRim.rimPower;
        shader.fragmentShader = /* glsl */`
            uniform vec3 rimColor;
            uniform float rimPower;
                ${shader.fragmentShader.replace(
            '#include <dithering_fragment>',
            '#include <dithering_fragment>\n\tfloat dotNV = 1.0-saturate( dot( normal, geometry.viewDir ) );\n\tgl_FragColor.rgb = mix(gl_FragColor.rgb, rimColor, rimPower * dotNV);'
        )}
        `;
        this.needsUpdate = true;
    };
    
    let lastMaterial;
    //endregion
    const update = () => {
    
        //region 鼠标滑过时显示选中状态
        const intersects = raycaster.intersectObjects(scene.children, true);
        if (intersects.length > 0) {
    
            console.log(intersects)
            let target = intersects[0].object;
    
            if (selectedObject !== target) {
                if (selectedObject && lastMaterial) {
                    selectedObject.material = lastMaterial;
                }
    
                selectedObject = target;
                lastMaterial = selectedObject.material;
                rimMaterial.map = selectedObject.material.map;
                selectedObject.material = rimMaterial;
            }
        } else if (selectedObject && lastMaterial) {
            selectedObject.material = lastMaterial;
            selectedObject = null;
            lastMaterial = null;
        }
        //endregion
    
        controls.update();
        renderer.render(scene, camera);
        window.requestAnimationFrame(update);
    };
    
    update()
    
    

    存在的问题是,并不是完全的描边效果,如下图,不过效率什么的应该不用担心了:



    最终方案:outlinepass+ WebGLMultisampleRenderTarget

    无奈上面几种都无法满足我对美术效果的期望,这里深度修改了outlinepass源码,结合webgl2的多采样渲染,最终实现了如下图效果:



    简述一下实现方案:结合WebGLMultisampleRenderTarget和outlinepass后基本抗锯齿的问题得到了解决,甚至都不需要fxaa,颜色太暗的问题则需要加亮环境光,这部分完成后如果背景为黑色,就还能看,但背景为白色的时候,就需要去修改outlinepass的源码混合通道为NormalBlending,需要一定的shader基础。

    相关文章

      网友评论

          本文标题:Three.js中OutlinePass与后处理冲突问题

          本文链接:https://www.haomeiwen.com/subject/zjdoydtx.html