知识点
unsigned char 整数范围为0到255
Mat.ptr<uchar>(row) --返回row行的首地址,用法类同数组
------真实的像素矩阵---------
(r,g,b)(r,g,b)(r,g,b)
(r,g,b)(r,g,b)(r,g,b)
(r,g,b)(r,g,b)(r,g,b)
#include"file.h"
#include<opencv2/opencv.hpp>
#include<iostream>
int main()
{
cv::Mat src, dst;
src = cv::imread("F:/test.jpg");
if (!src.data) {
printf("not load image\n");
}
cv::imshow("output image", src);
/*
矩阵的掩膜操作
*/
//图像的列数
//因为rgb三个值作为像素值,列数乘以通道数才是真正的列数
int cols = (src.cols-1)*src.channels();
//行数
int rows = src.rows;
//offsex=3
int offsex = src.channels();
//printf("channels:%d\n", src.channels());
//原图像的副本
dst = cv::Mat(src.size(), src.type());
for (int row = 1; row < (rows - 1); row++) {
//访问像素指针
const uchar*previous = src.ptr<uchar>(row - 1);
const uchar*current = src.ptr<uchar>(row);
const uchar*next = src.ptr<uchar>(row + 1);
uchar* output = dst.ptr<uchar>(row);
for (int col = offsex; col < cols; col++) {
//调整对比度
//各自与相邻像素的同类通道值计算
output[col] = 5 * current[col] - (current[col - offsex] + current[col + offsex] + previous[col] + next[col]);
}
/*
------真实的像素矩阵------
(r,g,b)(r,g,b)(r,g,b)
(r,g,b)(r,g,b)(r,g,b)
(r,g,b)(r,g,b)(r,g,b)
-------------------------
0 -1 0
-2 5 -3
0 -4 0
结果:
25-(-1+-2+-3+-4)
*/
}
imshow("changed image", dst);
cv::waitKey(0);
return 0;
}
image.png
掩膜后结果分析:
对比更加鲜明了,图片清晰度似乎提高了一些。
网友评论