美文网首页Learning
MXNET笔记(一)基本流程

MXNET笔记(一)基本流程

作者: 学而时习之_不亦说乎 | 来源:发表于2017-02-02 08:30 被阅读146次

    在MXNET的官方文档网站有非常多的实例,我们从最简单的MNIST开始,地址在这里(与“mxnet/example/image-classification”目录下的代码不同,但是更容易理解)。本文不求详解,只求对Mxnet的基本流程有个大概的了解。

    准备数据

    首先下载数据库并解压缩,得到train_lbltrain_img两组变量。

    import numpy as np
    import os
    import urllib
    import gzip
    import struct
    def download_data(url, force_download=True): 
        fname = url.split("/")[-1]
        if force_download or not os.path.exists(fname):
            urllib.urlretrieve(url, fname)
        return fname
    
    def read_data(label_url, image_url):
        with gzip.open(download_data(label_url)) as flbl:
            magic, num = struct.unpack(">II", flbl.read(8))
            label = np.fromstring(flbl.read(), dtype=np.int8)
        with gzip.open(download_data(image_url), 'rb') as fimg:
            magic, num, rows, cols = struct.unpack(">IIII", fimg.read(16))
            image = np.fromstring(fimg.read(), dtype=np.uint8).reshape(len(label), rows, cols)
        return (label, image)
    
    path='http://yann.lecun.com/exdb/mnist/'
    (train_lbl, train_img) = read_data(
        path+'train-labels-idx1-ubyte.gz', path+'train-images-idx3-ubyte.gz')
    (val_lbl, val_img) = read_data(
        path+'t10k-labels-idx1-ubyte.gz', path+'t10k-images-idx3-ubyte.gz')
    

    MXNet利用 iterator来进行给神经网络送batch数据,每个batch包含数张图像以及其相应的标签用于训练。iterator可以实现数据预取,实现数据读取和数据处理的管线化(pipeline)从而提高处理速度。

    • 数据库参数:比如数据库路径,输入尺寸
    • Batch参数: 比如batch 大小
    • 增强参数: 对输入图像进行额外处理,比如镜像、截断操作
    • 后端参数: 控制后端线程的行为
    • 辅助参数: 提供用于调试的参数设定,如verbose设定是否要输出parser信息。
    import mxnet as mx
    def to4d(img):
        return img.reshape(img.shape[0], 1, 28, 28).astype(np.float32)/255
    batch_size = 100
    train_iter = mx.io.NDArrayIter(to4d(train_img), train_lbl, batch_size, shuffle=True)
    val_iter = mx.io.NDArrayIter(to4d(val_img), val_lbl, batch_size)
    

    上面的代码就实现了非常简单的两个iterator,train_iterval_iter分别用于训练和验证。

    设计网络

    Mxnet的网络设计就像乐高积木,一块一块的堆叠就可以

    # Create a place holder variable for the input data
    data = mx.sym.Variable('data')
    # Flatten the data from 4-D shape (batch_size, num_channel, width, height) 
    # into 2-D (batch_size, num_channel*width*height)
    data = mx.sym.Flatten(data=data)
    
    # The first fully-connected layer
    fc1  = mx.sym.FullyConnected(data=data, name='fc1', num_hidden=128)
    # Apply relu to the output of the first fully-connnected layer
    act1 = mx.sym.Activation(data=fc1, name='relu1', act_type="relu")
    
    # The second fully-connected layer and the according activation function
    fc2  = mx.sym.FullyConnected(data=act1, name='fc2', num_hidden = 64)
    act2 = mx.sym.Activation(data=fc2, name='relu2', act_type="relu")
    
    # The thrid fully-connected layer, note that the hidden size should be 10, which is the number of unique digits
    fc3  = mx.sym.FullyConnected(data=act2, name='fc3', num_hidden=10)
    # The softmax and loss layer
    mlp  = mx.sym.SoftmaxOutput(data=fc3, name='softmax')
    

    可视化上述代码设计的网络

    # We visualize the network structure with output size (the batch_size is ignored.)
    shape = {"data" : (batch_size, 1, 28, 28)}
    mx.viz.plot_network(symbol=mlp, shape=shape)
    
    Network Architecture

    一共三层,前面两层FullyConnected + Relu,最后一层为FullyConnected+Softmax。

    训练

    最后通过model.fit来进行训练,并打印出Log文件

    import logging
    logging.getLogger().setLevel(logging.DEBUG)
    
    model = mx.model.FeedForward(
        symbol = mlp,       # network structure
        num_epoch = 10,     # number of data passes for training 
        learning_rate = 0.1 # learning rate of SGD 
    )
    model.fit(
        X=train_iter,       # training data
        eval_data=val_iter, # validation data
        batch_end_callback = mx.callback.Speedometer(batch_size, 200) # output progress for each 200 data batches
    )
    

    相关文章

      网友评论

        本文标题:MXNET笔记(一)基本流程

        本文链接:https://www.haomeiwen.com/subject/zmakittx.html