美文网首页
[opencv] 多线程中图像管理

[opencv] 多线程中图像管理

作者: ericdejavu | 来源:发表于2017-11-01 10:07 被阅读0次

created by Dejavu


你们有过这样的经历吗?当在多线程中使用opencv的imshow和waitkey方法,不知道该如何下手,因为waitkey是管理按键事件和图像刷新的,imshow则是用来更新对应窗口的图像,如果这两者在多线程的程序中滥用,会导致很多致命的错误,大部分是以栈错误为主,在这里我有一个比较好的解决多线程中管理opencv图像显示的办法,就是将所有的对图像显示和按键事件操作放入到一个单独的线程中,在这个线程,要做的是仅仅是收集外部处理过后的图像

  • 以下代码,是针对与linux系统编写的

该类的使用方法

#include "imgManager.h"

int main() {
    //输入源,按照具体项目而定
    cv::VideoCapture cap(0);
    cv::Mat src;cap>>src;
    ImgManager iMag(cap);
    int src_id = iMag.add(src,"tracker");
    while(!iMag.isSignalLoss) {
        src = cv::Scalar(iMag.vMin,iMag.vMax,iMag.sMin);
        iMag.update(src_id,src);
        //iMag.remove(src_id)
    }
}

要用到的头文件

#include <iostream>
#include <vector>
#include <cmath>
#include <pthread.h>
#include <opencv2/opencv.hpp>
#include <sys/time.h>
#include <unistd.h>

using namespace std;

线程锁类

class Mutex {
private:
    pthread_mutex_t m_mutex;

public:
    Mutex() {pthread_mutex_init(&m_mutex, NULL);}
    void lock() {pthread_mutex_lock(&m_mutex);}
    void unlock() {pthread_mutex_unlock(&m_mutex);}

    class ScopedLock {
        private:
            Mutex &_mutex;

    public:
        ScopedLock(Mutex &mutex) : _mutex(mutex) {_mutex.lock();}
        ~ScopedLock() {_mutex.unlock();}
    };
};

外部输出输入数据类,包括orb特征算子的描述符im,和关键点集kp

class DataSet{
public:
    cv::Mat color;
    std::vector<cv::KeyPoint> kp;
    cv::Mat im;
    void set(DataSet dataSet);
    void operator=(DataSet &dataSet);
};

图像管理类,这里我用了VideoCapture类作为主要输入源,具体输入源,需符合项目要求即可

class ImgManager : public DataSet {
private:
    bool isSelect,isShowInfo,isCopyOperation;
    //输入源按照具体项目而定
    cv::VideoCapture ∩
    int sq;
    int pause_time;
    bool write_flag;
    bool getData();
    static void* getPthreadImg(void*);
    void run_thread();

public:
    enum {Exec,Roi,Dest,Next};
    Mutex imgLock;
    bool isSignalLoss;
    bool isCalcFeature;
    int order;
    std::list<VisImg> visImg;
    int vMin,vMax,sMin;

    ImgManager(cv::VideoCapture &c) : isSignalLoss(false),vMin(30),vMax(200),sMin(5),
    cap(c),order(-1),write_flag(false),pause_time(1),sq(0),
    isSelect(false),isShowInfo(false),isCopyOperation(false) {
        run_thread();
    }
    ~ImgManager() {isSignalLoss = true;}

    bool calc_feature();
    DataSet copy();
    cv::Mat clone();
    int add(cv::Mat &src,std::string name);
    bool update(int index,cv::Mat& src);
    bool remove(int index,int pauseTime=1,int orderType=-1);
    bool show();
};

cpp文件 类中函数的实现

#include "imgManager.h"

//different memory manager
//i defined in main function those data no need to delete i use &dataSet
void DataSet::operator=(DataSet &dataSet) {
    color = dataSet.color.clone();
    im = dataSet.im.clone();
    if(kp.size() > 1) kp.clear();
    for(int i=0;i<dataSet.kp.size();i++) kp.push_back(dataSet.kp[i]);
}

//function return dataSet will generator a lot of useless data
//those data need to delete so..... just use dataSet
void DataSet::set(DataSet dataSet) {
    color = dataSet.color.clone();
    im = dataSet.im.clone();
    if(kp.size() > 1) kp.clear();
    for(int i=0;i<dataSet.kp.size();i++) kp.push_back(dataSet.kp[i]);
}

DataSet ImgManager::copy() {
    isCopyOperation = true;
    Mutex::ScopedLock lock(imgLock);
    DataSet dataSet;
    dataSet.color = color.clone();
    if(isCalcFeature) {
        dataSet.im = im.clone();
        for(int i=0;i<kp.size();i++) dataSet.kp.push_back(kp[i]);
    }
    isCopyOperation = false;
    return dataSet;
}

cv::Mat ImgManager::clone() {
    isCopyOperation = true;
    Mutex::ScopedLock lock(imgLock);
    cv::Mat data = color.clone();
    isCopyOperation = false;
    return data;
}

bool ImgManager::calc_feature() {
    cv::OrbFeatureDetector ofd;
    cv::OrbDescriptorExtractor ode;
    cv::Mat src = color.clone();
    cv::Mat gray = src.clone();
    cv::blur(src,src,cv::Size(3,3));
    cv::cvtColor(src,gray,CV_BGR2GRAY);
    ofd.detect(gray,kp);
    ode.compute(gray,kp,im);
    if(im.empty() || src.empty()) return false;
    return true;
}

// ------------------------show Unit -------------------
int ImgManager::add(cv::Mat &src,std::string name) {
    VisImg tmp;
    tmp.name = name;
    std::cout << src.size() << std::endl;
    tmp.src = src.clone();
    tmp.index = sq;
    visImg.push_back(tmp);
    if(name == "tracker") {
        cv::namedWindow("tracker");
        cv::createTrackbar("vMin", "tracker", &vMin, 255, 0);
        cv::createTrackbar("vMax", "tracker", &vMax, 255, 0);
        cv::createTrackbar("sMin", "tracker", &sMin, 255, 0);
        usleep(1e5);
    }
    std::cout << tmp.src.size() << std::endl;
    return (sq++);
}

bool ImgManager::remove(int index,int pauseTime,int orderType) {
    if(visImg.size() < 1) return false;
    for(std::list<VisImg>::iterator it = visImg.begin();it!=visImg.end();) {
        if(it->index == index) {
            cv::destroyWindow(it->name);
            it = visImg.erase(it);
            break;
        }
        else it++;
    }
    pause_time = pauseTime;
    if(order == Next) {
        order = -1;
        return true;
    }
    else if(orderType == order) {
        order = -1;
        return true;
    }
    return false;
}

bool ImgManager::update(int index,cv::Mat& src) {
    if(!write_flag) write_flag = true;
    for(std::list<VisImg>::iterator it = visImg.begin();it!=visImg.end();it++) if(index == it->index) {
        it->src = src.clone();
    }
    write_flag = false;
    return (pause_time == 0);
}

bool ImgManager::getData() {
    if(isCopyOperation) return true;
    Mutex::ScopedLock lock(imgLock);
    cap >> color;
    if(isCalcFeature) calc_feature();
    cv::imshow("src",color);
    for(std::list<VisImg>::iterator it = visImg.begin();it!=visImg.end();it++) {
        if(!write_flag) {
            if(it->src.empty()) continue;
            cv::imshow(it->name,it->src);
        }
    }
    char key = char(cv::waitKey(pause_time));
    switch(key) {
        case 27:return false;break;
        case 'n': order = Next;break;
        case 'r': order = Roi;break;
        case 'd': order = Dest;break;
        case 'c': order = Exec;break;
    }
    if(pause_time == 0) pause_time = 1;
    return true;
}

void* ImgManager::getPthreadImg( void* __this ) {
    ImgManager* _this = (ImgManager*) __this;
    while(true) {
        if(!_this->getData()) {
            _this->isSignalLoss = true;
            cv::destroyWindow("src");
            for(std::list<VisImg>::iterator it = _this->visImg.begin();it!=_this->visImg.end();it++) cv::destroyWindow(it->name);
            _this->visImg.clear();
            pthread_exit(NULL);
        }
    }
}

void ImgManager::run_thread() {
    pthread_t id;
    pthread_create(&id,NULL,getPthreadImg,(void*)this);
}

编译用到的makefile参考

OPENCV = $(shell pkg-config --cflags opencv) $(shell pkg-config --libs opencv)


LINK_ALL = $(OPENCV)

SRC = $(CAMERASHIFT) $(GUIDENCE) imgManager.cpp exec.cpp
TAR = exec

$(TAR):$(SRC)
    g++ -o $(TAR) $(SRC) $(LINK_ALL) -z execstack -fno-stack-protector -g

clean:
    rm $(OBJ) $(TAR)

%.o:%.cpp
    g++ -I $(LINK_ALL) -o $@ -c $<

相关文章

网友评论

      本文标题:[opencv] 多线程中图像管理

      本文链接:https://www.haomeiwen.com/subject/znjwpxtx.html