美文网首页
Abstracts for References 74, 75,

Abstracts for References 74, 75,

作者: 程凉皮儿 | 来源:发表于2020-09-13 21:03 被阅读0次

    线粒体病–在基因突变引起辅酶Q10(泛醌)缺乏的儿童中有报道过早发型肾病综合征;突变的基因参与了辅酶Q10生物合成(COQ2、PDSS2、COQ6和ADCK4)[74-79]。泛醌治疗[15-30mg/(kg·d)]可能对这些患者有效。

    74

    TI

    ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption.

    AU

    Ashraf S, Gee HY, Woerner S, Xie LX, Vega-Warner V, Lovric S, Fang H, Song X, Cattran DC, Avila-Casado C, Paterson AD, NitschkéP, Bole-Feysot C, Cochat P, Esteve-Rudd J, Haberberger B, Allen SJ, Zhou W, Airik R, Otto EA, Barua M, Al-Hamed MH, Kari JA, Evans J, Bierzynska A, Saleem MA, Böckenhauer D, Kleta R, El Desoky S, Hacihamdioglu DO, Gok F, Washburn J, Wiggins RC, Choi M, Lifton RP, Levy S, Han Z, Salviati L, Prokisch H, Williams DS, Pollak M, Clarke CF, Pei Y, Antignac C, Hildebrandt F

    SO

    J Clin Invest. 2013 Dec;123(12):5179-89. Epub 2013 Nov 25.

    Identification of single-gene causes of steroid-resistant nephrotic syndrome (SRNS) has furthered the understanding of the pathogenesis of this disease. Here, using a combination of homozygosity mapping and whole human exome resequencing, we identified mutations in the aarF domain containing kinase 4 (ADCK4) gene in 15 individuals with SRNS from 8 unrelated families. ADCK4 was highly similar to ADCK3, which has been shown to participate in coenzyme Q10 (CoQ10) biosynthesis. Mutations in ADCK4 resulted in reduced CoQ10 levels and reduced mitochondrial respiratory enzyme activity in cells isolated from individuals with SRNS and transformed lymphoblasts. Knockdown of adck4 in zebrafish and Drosophila recapitulated nephrotic syndrome-associated phenotypes. Furthermore, ADCK4 was expressed in glomerular podocytes and partially localized to podocyte mitochondria and foot processes in rat kidneys and cultured human podocytes. In human podocytes, ADCK4 interacted with members of the CoQ10 biosynthesis pathway, including COQ6, which has been linked with SRNS and COQ7. Knockdown of ADCK4 in podocytes resulted in decreased migration, which was reversed by CoQ10 addition. Interestingly, a patient with SRNS with a homozygous ADCK4 frameshift mutation had partial remission following CoQ10 treatment. These data indicate that individuals with SRNS with mutations in ADCK4 or other genes that participate in CoQ10 biosynthesis may be treatable with CoQ10.

    AD

    PMID

    24270420

    75

    TI

    COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement.

    AU

    Diomedi-Camassei F, Di Giandomenico S, Santorelli FM, Caridi G, Piemonte F, Montini G, Ghiggeri GM, Murer L, Barisoni L, Pastore A, Muda AO, Valente ML, Bertini E, Emma F

    SO

    J Am Soc Nephrol. 2007;18(10):2773. Epub 2007 Sep 12.

    Primary coenzyme Q(10) (CoQ(10)) deficiency includes a group of rare autosomal recessive disorders primarily characterized by neurological and muscular symptoms. Rarely, glomerular involvement has been reported. The COQ2 gene encodes the para-hydroxybenzoate-polyprenyl-transferase enzyme of the CoQ(10) synthesis pathway. We identified two patients with early-onset glomerular lesions that harbored mutations in the COQ2 gene. The first patient presented with steroid-resistant nephrotic syndrome at the age of 18 months as a result of collapsing glomerulopathy, with no extrarenal symptoms. The second patient presented at five days of life with oliguria, had severe extracapillary proliferation on renal biopsy, rapidly developed end-stage renal disease, and died at the age of 6 months after a course complicated by progressive epileptic encephalopathy. Ultrastructural examination of renal specimens from these cases, as well as from two previously reported patients, showed an increased number of dysmorphic mitochondria in glomerular cells. Biochemical analyses demonstrated decreased activities of respiratory chain complexes [II+III]and decreased CoQ(10) concentrations in skeletal muscle and renal cortex. In conclusion, we suggest that inherited COQ2 mutations cause a primary glomerular disease with renal lesions that vary in severity and are not necessarily associated with neurological signs. COQ2 nephropathy should be suspected when electron microscopy shows an increased number of abnormal mitochondria in podocytes and other glomerular cells.

    AD

    Divisions of Pathology , Department of Laboratory Medicine, Bambino GesùChildren's Hospital and Research Institute, Rome, Italy.

    PMID

    17855635

    76

    TI

    COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness.

    AU

    Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z, Xie LX, Salviati L, Hurd TW, Vega-Warner V, Killen PD, Raphael Y, Ashraf S, Ovunc B, Schoeb DS, McLaughlin HM, Airik R, Vlangos CN, Gbadegesin R, Hinkes B, Saisawat P, Trevisson E, Doimo M, Casarin A, Pertegato V, Giorgi G, Prokisch H, Rötig A, Nürnberg G, Becker C, Wang S, Ozaltin F, Topaloglu R, Bakkaloglu A, Bakkaloglu SA, Müller D, Beissert A, Mir S, Berdeli A, Varpizen S, Zenker M, Matejas V, Santos-Ocaña C, Navas P, Kusakabe T, Kispert A, Akman S, Soliman NA, Krick S, Mundel P, Reiser J, Nürnberg P, Clarke CF, Wiggins RC, Faul C, Hildebrandt F

    SO

    J Clin Invest. 2011 May;121(5):2013-24. Epub 2011 Apr 11.

    Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of end-stage renal failure. Identification of single-gene causes of SRNS has generated some insights into its pathogenesis; however, additional genes and disease mechanisms remain obscure, and SRNS continues to be treatment refractory. Here we have identified 6 different mutations in coenzyme Q10 biosynthesis monooxygenase 6 (COQ6) in 13 individuals from 7 families by homozygosity mapping. Each mutation was linked to early-onset SRNS with sensorineural deafness. The deleterious effects of these human COQ6 mutations were validated by their lack of complementation in coq6-deficient yeast. Furthermore, knockdown of Coq6 in podocyte cell lines and coq6 in zebrafish embryos caused apoptosis that was partially reversed by coenzyme Q10 treatment. In rats, COQ6 waslocated within cell processes and the Golgi apparatus of renal glomerular podocytes and in stria vascularis cells of the inner ear, consistent with an oto-renal disease phenotype. These data suggest that coenzyme Q10-related forms of SRNS and hearing loss can be molecularly identified and potentially treated.

    AD

    Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA.

    PMID

    21540551

    77

    TI

    Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease.

    AU

    Peng M, Falk MJ, Haase VH, King R, Polyak E, Selak M, Yudkoff M, Hancock WW, Meade R, Saiki R, Lunceford AL, Clarke CF, Gasser DL

    SO

    PLoS Genet. 2008;4(4):e1000061. Epub 2008 Apr 25.

    Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2(kd/kd) genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2(kd/kd) mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2(loxP/loxP) knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2(loxP/loxP) knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.

    AD

    Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America.

    PMID

    18437205

    78

    TI

    Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2).

    AU

    Scalais E, Chafai R, Van Coster R, Bindl L, Nuttin C, Panagiotaraki C, Seneca S, Lissens W, Ribes A, Geers C, Smet J, De Meirleir L

    SO

    Eur J Paediatr Neurol. 2013 Nov;17(6):625-30. Epub 2013 Jun 28.

    BACKGROUND: Primary coenzyme Q10 (CoQ10) deficiencies are heterogeneous autosomal recessive disorders. CoQ2 mutations have been identified only rarely in patients. All affected individuals presented with nephrotic syndrome in the first year of life.

    METHODS: An infant is studied with myoclonic seizures and hypertrophic cardiomyopathy in the first months of life and developed a nephrotic syndrome in a later stage.

    RESULTS: At three weeks of age, the index patient developed myoclonic seizures. In addition, he had hypertrophic cardiomyopathy and increased CSF lactate. A skeletal muscle biopsy performed at two months of age disclosed normal activities of the oxidative phosphorylation complexes. The child was supplemented with CoQ10 (5 mg/kg/day). At the age of four months, brain MR images showed bilateral increased signalintensities in putamen and cerebral cortex. After that age, he developed massive proteinuria. The daily dose of CoQ10 was increased to 30 mg/kg. Renal biopsy showed focal segmental glomerulosclerosis. Biochemical analyses of a kidney biopsy sample revealed a severely decreased activity of succinate cytochrome c reductase [complex II + III]suggesting ubiquinone depletion. Incorporation of labelled precursors necessary for CoQ10 synthesis was significantly decreased in cultured skin fibroblasts. His condition deteriorated and he died at the age of five months. A novel homozygous mutation c.326G>A (p.Ser109Asn) was found in COQ2.

    CONCLUSIONS: In contrast to previously reported patients with CoQ2 the proband presented with early myoclonic epilepsy, hypertrophic cardiomyopathy and only in a later stage developed a nephrotic syndrome. The phenotype of this patient enlarges the phenotypical spectrum of the multisystem infantile variant.

    AD

    Department of Paediatrics, Division of Paediatric Neurology, Centre Hospitalier de Luxembourg, Rue Barblé, 4, L 1210 Luxembourg, Luxembourg. Electronic address: scalais.emmanuel@chl.lu.

    PMID

    23816342

    79

    TI

    Diffuse mesangial sclerosis in a PDSS2 mutation-induced coenzyme Q10 deficiency.

    AU

    Iványi B, Rácz GZ, Gál P, Brinyiczki K, Bódi I, Kalmár T, Maróti Z, Bereczki C

    SO

    Pediatr Nephrol. 2018;33(3):439. Epub 2017 Oct 14.

    BACKGROUND: A 7-month-old male infant was admitted because he was suffering from nephrotic syndrome, along with encephalomyopathy, hypertrophic cardiomyopathy, clinically suspected deafness and retinitis pigmentosa, and an elevated serum lactate level.

    METHODS: Coenzyme Q10 supplementation was started because of the clinical suspicion of primary CoQ10 deficiency. Despite intensive efforts, he passed away 4 weeks after admission.

    RESULTS: The results of genetic tests, available postmortem, explored two hitherto undescribed mutations in the PDSS2 gene. Both were located within the polyprenyl synthetase domain. Clinical exome sequencing revealed a heterozygous missense mutation in exon 3, and our in-house joint-analysis algorithm detected a heterozygous large 2923-bp deletion that affected the 5 prime end of exon 8. Other causative defects in the CoQ10 and infantile nephrosis-related genes examined were not found. A postmortem histological, immunohistochemical, and electron microscopic evaluation of the glomeruli revealed collapsing-sclerosing lesions consistent with diffuse mesangial sclerosis. The extrarenal alterations included hypertrophic cardiomyopathy and diffuse alveolar damage. A histological evaluation of the central nervous system and skeletal muscles did not demonstrate any obvious abnormality.

    CONCLUSIONS: Until now, the clinical features and the mutational status of 6 patients with a PDSS2 gene defect have been reported in the English literature. Here, we describe for the first time detailed kidney morphology features in a patient with nephrotic syndrome carrying mutations in the PDSS2 gene.

    AD

    PMID

    29032433

    相关文章

      网友评论

          本文标题:Abstracts for References 74, 75,

          本文链接:https://www.haomeiwen.com/subject/zouoektx.html