大多数时候,人们使用不同的深度学习框架和标准开发工具箱。(SDKs),用于实施深度学习方法,具体如下:
框架
- Tensorflow: https://www.tensorflow.org/
- Caffe: http://caffe.berkeleyvision.org/
- KERAS: https://keras.io/
- Theano: http://deeplearning.net/software/theano/
- Torch: http://torch.ch/
- PyTorch: http://pytorch.org/
- Lasagne: https://lasagne.readthedocs.io/en/latest/
- DL4J (DeepLearning4J): https://deeplearning4j.org/
- Chainer: http://chainer.org/
- DIGITS: https://developer.nvidia.com/digits
- CNTK (Microsoft): https://github.com/Microsoft/CNTK
- MatConvNet: http://www.vlfeat.org/matconvnet/
- MINERVA: https://github.com/dmlc/minerva
- MXNET: https://github.com/dmlc/mxnet
- OpenDeep: http://www.opendeep.org/
- PuRine: https://github.com/purine/purine2
- PyLerarn2: http://deeplearning.net/software/pylearn2/
- TensorLayer: https://github.com/zsdonghao/tensorlayer
- LBANN: https://github.com/LLNL/lbann
SDKs
- cuDNN: https://developer.nvidia.com/cudnn
- TensorRT: https://developer.nvidia.com/tensorrt
- DeepStreamSDK: https://developer.nvidia.com/deepstream-sdk
- cuBLAS: https://developer.nvidia.com/cublas
- cuSPARSE: http://docs.nvidia.com/cuda/cusparse/
- NCCL : https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
基准数据集
以下是常用于评估不同应用领域的深度学习方法的基准数据集列表。
图像分类或检测或分割
- MNIST: http://yann.lecun.com/exdb/mnist/
- CIFAR 10/100: https://www.cs.toronto.edu/~kriz/cifar.html
- SVHN/ SVHN2: http://ufldl.stanford.edu/housenumbers/
- CalTech 101/256: http://www.vision.caltech.edu/Image_Datasets/Caltech101/
- STL-10: https://cs.stanford.edu/~acoates/stl10/
- NORB: http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
- SUN-dataset: http://groups.csail.mit.edu/vision/SUN/
- ImageNet: http://www.image-net.org/
- National Data Science Bowl Competition: http://www.datasciencebowl.com/
- COIL 20/100: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
- MS COCO DATASET: http://mscoco.org/
- MIT-67 scene dataset: http://web.mit.edu/torralba/www/indoor.html
-
Caltech-UCSD Birds-200 dataset: http://www.vision.caltech.edu/visipedia/CUB-200-
2011.html - Pascal VOC 2007 dataset: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
-
H3D Human Attributes dataset:
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/ - Face recognition dataset: http://vis-www.cs.umass.edu/lfw/
- For more data-set visit: https://www.kaggle.com/
- http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
- Recently Introduced Datasets in Sept. 2016:
- Google Open Images (~9M images)—https://github.com/openimages/dataset
- Youtube-8M (8M videos: https://research.google.com/youtube8m/
文本分类
-
Reuters-21578 Text Categorization Collection:
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html - Sentiment analysis from Stanford: http://ai.stanford.edu/~amaas/data/sentiment/
-
Movie sentiment analysis from Cornel:
http://www.cs.cornell.edu/people/pabo/movie-review-data/
Free eBooks: https://www.gutenberg.org/ -
Brown and stanford corpus on present americal english:
https://en.wikipedia.org/wiki/Brown_Corpus -
Google 1Billion word corpus: https://github.com/ciprian-chelba/1-billion-wordlanguage-
modeling-benchmark
图像编码
- Flickr-8k: http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
- Common Objects in Context (COCO):http://cocodataset.org/#overview;http://sidgan.me/technical/2016/01/09/Exploring-Datasets
机器翻译
-Pairs of sentences in English and French: https://www.isi.edu/naturallanguage/
download/hansard/
-
European Parliament Proceedings parallel Corpus 196-2011:
http://www.statmt.org/europarl/ - The statistics for machine translation: http://www.statmt.org/
问答
- Stanford Question Answering Dataset (SQuAD): https://rajpurkar.github.io/SQuADexplorer/
- Dataset from DeepMind: https://github.com/deepmind/rc-data
- Amazon dataset:http://jmcauley.ucsd.edu/data/amazon/qa/,;http://trec.nist.gov/data/qamain...,;http://www.ark.cs.cmu.edu/QA-data/,;http://webscope.sandbox.yahoo.co...,;http://blog.stackoverflow.com/20..
语音辨识
- TIMIT : https://catalog.ldc.upenn.edu/LDC93S1
- Voxforge: http://voxforge.org/
- Open Speech and Language Resources: http://www.openslr.org/12/
文章摘要
- https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports
- http://www-nlpir.nist.gov/related_projects/tipster_summac/cmp_lg.html
- https://catalog.ldc.upenn.edu/LDC2002T31
情感分析
- IMDB dataset: http://www.imdb.com/
高光谱图像分析
- http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
- https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
- http://www2.isprs.org/commissions/comm3/wg4/HyRANK.html
期刊和会议
Conferences
- Neural Information Processing System (NIPS)
- International Conference on Learning Representation (ICLR): What are you doing for
Deep Learning? - International Conference on Machine Learning (ICML)
- Computer Vision and Pattern Recognition (CVPR): What are you doing with Deep
Learning? - International Conference on Computer Vision (ICCV)
- European Conference on Computer Vision (ECCV)
- British Machine Vision Conference (BMVC)
Journal
- Journal of Machine Learning Research (JMLR)
- IEEE Transaction of Neural Network and Learning System (
- IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
- Computer Vision and Image Understanding (CVIU)
- Pattern Recognition Letter
- Neural Computing and Application
- International Journal of Computer Vision
- IEEE Transactions on Image Processing
- IEEE Computational Intelligence Magazine
- Proceedings of IEEE
- IEEE Signal Processing Magazine
- Neural Processing Letter
- Pattern Recognition
- Neural Networks
- ISPPRS Journal of Photogrammetry and Remote Sensing
网友评论