- Letter Combinations of a Phone Number
# Letter Combinations of a Phone Number
# Given a string containing digits from 2-9 inclusive,
# return all possible letter combinations represent.
# mapping of digit to letters is given.
class Solution:
def letterCombinations(self, digits):
if not digits:
return []
dic = {"2":"abc", "3":"def", "4":"ghi", "5":"jkl", "6":"mno", "7":"pqrs", "8":"tuv", "9":"wxyz"}
res = []
self.dfs(digits, dic, 0, "", res)
return res
def dfs(self, digits, dic, index, path, res):
if len(path) == len(digits):
res.append(path) #深度搜索到的每条str
return
for i in range(index, len(digits)):
for j in dic[digits[i]]: # 数字逐位 遍历深入 至串长达到
self.dfs(digits, dic, i+1, path+j, res) # index & strPath
- Word Search II
# Word Search II
# Given a 2D board and a list of words from the dictionary,
# find all words in the board.
# sequentially adjacent cell,
# "adjacent": horizontally or vertically neighboring.
# same letter not be used more than once in a word.
class Solution:
def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
WORD_KEY = '$'
trie = {}
for word in words:
node = trie
for letter in word:
# retrieve the next node; If not found, create a empty node.
node = node.setdefault(letter, {})
# mark the existence of a word in trie node
node[WORD_KEY] = word
rowNum = len(board)
colNum = len(board[0])
matchedWords = []
def backtracking(row, col, parent):
letter = board[row][col]
currNode = parent[letter]
# check if we find a match of word
word_match = currNode.pop(WORD_KEY, False)
if word_match:
# also we removed the matched word to avoid duplicates,
# as well as avoiding using set() for results.
matchedWords.append(word_match)
# Before the EXPLORATION, mark the cell as visited
board[row][col] = '#'
# Explore the neighbors in 4 directions, i.e. up, right, down, left
for (rowOffset, colOffset) in [(-1, 0), (0, 1), (1, 0), (0, -1)]:
newRow, newCol = row + rowOffset, col + colOffset
if newRow < 0 or newRow >= rowNum or newCol < 0 or newCol >= colNum:
continue
if not board[newRow][newCol] in currNode:
continue
backtracking(newRow, newCol, currNode)
# End of EXPLORATION, we restore the cell
board[row][col] = letter
# Optimization: incrementally remove the matched leaf node in Trie.
if not currNode:
parent.pop(letter)
for row in range(rowNum):
for col in range(colNum):
# starting from each of the cells
if board[row][col] in trie:
backtracking(row, col, trie)
return matchedWords
- WildCard Matching
# WildCard Matching
# s; pattern p; wildcard pattern ? *
class Solution:
def isMatch(self, s, p):
length = len(s)
if len(p) - p.count('*') > length:
return False
dp = [True] + [False]*length
for i in p:
if i != '*':
for n in reversed(range(length)):
dp[n+1] = dp[n] and (i == s[n] or i == '?')
else:
for n in range(1, length+1):
dp[n] = dp[n-1] or dp[n]
dp[0] = dp[0] and i == '*'
return dp[-1]
- Regular Expression Matching
# 10. Regular Expression Matching
# Input: string (s) and a pattern (p)
# support for '.' and '*'
# Input:
# s = "aab"
# p = "c*a*b"
# Output: true
# Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore, it matches "aab".
class Solution:
def isMatch(self, s: str, p: str) -> bool:
dp = [[False] * (len(s) + 1) for _ in range(len(p) + 1)]
dp[0][0] = True
for i in range(1, len(p)):
dp[i + 1][0] = dp[i - 1][0] and p[i] == '*'
for i in range(len(p)):
for j in range(len(s)):
if p[i] == '*':
dp[i + 1][j + 1] = dp[i - 1][j + 1] or dp[i][j + 1]
if p[i - 1] == s[j] or p[i - 1] == '.':
dp[i + 1][j + 1] |= dp[i + 1][j]
else:
dp[i + 1][j + 1] = dp[i][j] and (p[i] == s[j] or p[i] == '.')
return dp[-1][-1]
网友评论