以下是idea中用到的maven仓库
版本说明:
spark 2.3.1
scala 2.11
hadoop 3.1.1
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.attest.bigdata</groupId>
<artifactId>spark-200329</artifactId>
<version>1.0</version>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.3.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.3.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.3.1</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>1.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
<version>2.3.1</version>
</dependency>
</dependencies>
<build>
<finalName>WordCount</finalName>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
package com.sparktest.bigdata.spark
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext, rdd}
object WordCount {
def main(args: Array[String]): Unit = {
//设定部署环境
//app id
val config : SparkConf = new SparkConf().setMaster("local").setAppName("WordCount")
val sc = new SparkContext(config)
//读取文件
val lines : RDD [String] = sc.textFile("hdfs://192.168.56.101:9000/stream")
val words : RDD[String] = lines.flatMap(_.split(" "))
val wordToOne : RDD[(String,Int)] = words.map((_,1))
val wordToSum : RDD[(String,Int)] = wordToOne.reduceByKey(_+_)
val result: Array[(String, Int)] = wordToSum.collect()
//println(result)
result.foreach(println)
//sc.textFile("input").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
}
}
网友评论