美文网首页我爱编程
Windows 2012 安装Tensorflow

Windows 2012 安装Tensorflow

作者: 董春磊 | 来源:发表于2017-09-19 17:18 被阅读350次

    官网安装方法:

    https://www.tensorflow.org/install/install_windows

    1.pip

    2.Anaconda

    3.源码:http://www.jianshu.com/p/d0a5fa97fcc8

    说明:使用pip或anaconda等方式安装的预编译好的tensorflow没有AVX2指令集加速,通过手动编译可以更好的利用GPU。但是如果没有AVX或者GPU的话,手动编译几乎没有优势。

    目前,官方只提供了Ubuntu和Mac OS X的编译支持,在Windows下可以通过Bazel和CMake两种方式进行编译,但只是 “highly experimental”,可能会遇到各种错误。

    可供参考的其他安装方法:

    http://blog.csdn.net/wx7788250/article/details/60877166

    http://blog.csdn.net/JerryZhang__/article/details/60763161

    开始安装

    前提条件

    windows平台安装TF,要求python版本号必须为3.5.x or 3.6.x,并且必须选择为x64平台的。

    必须安装Microsoft Visual C++ 2015 Redistributable Update 3,否则会执行失败,报错内容稍后提到(missing MSVCP140.dll)。

    下载链接:

    VC++安装包下载:https://www.microsoft.com/en-us/download/details.aspx?id=53587

    python:https://www.python.org/downloads/release/python-362/

    安装Bazel:https://docs.bazel.build/versions/master/install-windows.html

    安装Chocolatey:https://chocolatey.org/install

    配置本地环境

    1.VC++安装包下载:

    https://www.microsoft.com/en-us/download/details.aspx?id=53587

    2.安装python 3.6.x,

    https://www.python.org/downloads/release/python-362/

    3.安装Cuda和CuDNN

    谷歌提供了CPU和GPU版本的TensorFlow,使用GPU版本的TensorFlow进行训练需要NVIDIA显卡,并安装Cuda和CnDNN,如果使用CPU版本的,可跳过这一步。

    CUDA安装:https://developer.nvidia.com/cuda-downloads

    按照提示直接安装即可。

    CuDNN安装:https://developer.nvidia.com/cudnn

    这一步需要注册一个账号,并填写一个问卷,完成后即可下载。CuDNN下载后解压,添加 [yourPath]\cuda 和[yourPath]\cuda\bin 到环境变量 并按照如下操作:

    [yourPath]\cuda\bin\cudnn64_5.dll —> (拷贝至)

    [yourPath]\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin

    [yourPath]\cuda\include\cudnn.h —> (拷贝至)

    [yourPath]\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include

    [yourPath]\cuda\lib\x64\cudnn.lib —>(拷贝至)

    [yourPath]\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64

    4.查看CUDA版本

    在命令提示符中查看CUDA8的版本

    C:\Users\Administrator.chenbo-ovr097b6>nvcc -V

    nvcc: NVIDIA (R) Cuda compiler driver

    Copyright (c) 2005-2016 NVIDIA Corporation

    Built on Mon_Jan__9_17:32:33_CST_2017

    Cuda compilation tools, release 8.0, V8.0.60

    5.查看GPU设备信息

    运行deviceQuery.exe,查看GPU设备信息

    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\extras\demo_suite>device

    Query.exe

    deviceQuery.exe Starting...

    CUDA Device Query (Runtime API) version (CUDART static linking)

    Detected 1 CUDA Capable device(s)

    Device 0: "Tesla M60"

    CUDA Driver Version / Runtime Version          9.0 / 8.0

    CUDA Capability Major/Minor version number:    5.2

    Total amount of global memory:                8108 MBytes (8501460992 bytes)

    (16) Multiprocessors, (128) CUDA Cores/MP:    2048 CUDA Cores

    GPU Max Clock rate:                            1178 MHz (1.18 GHz)

    Memory Clock rate:                            2505 Mhz

    Memory Bus Width:                              256-bit

    L2 Cache Size:                                2097152 bytes

    Maximum Texture Dimension Size (x,y,z)        1D=(65536), 2D=(65536, 65536),3D=(4096, 4096, 4096)

    Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers

    Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers

    Total amount of constant memory:              65536 bytes

    Total amount of shared memory per block:      49152 bytes

    Total number of registers available per block: 65536

    Warp size:                                    32

    Maximum number of threads per multiprocessor:  2048

    Maximum number of threads per block:          1024

    Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

    Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)

    Maximum memory pitch:                          2147483647 bytes

    Texture alignment:                            512 bytes

    Concurrent copy and kernel execution:          Yes with 2 copy engine(s)

    Run time limit on kernels:                    No

    Integrated GPU sharing Host Memory:            No

    Support host page-locked memory mapping:      Yes

    Alignment requirement for Surfaces:            Yes

    Device has ECC support:                        Disabled

    CUDA Device Driver Mode (TCC or WDDM):        TCC (Tesla Compute Cluster Driver)

    Device supports Unified Addressing (UVA):      Yes

    Device PCI Domain ID / Bus ID / location ID:  0 / 0 / 21

    Compute Mode:

    < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

    deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = Tesla M60

    Result = PASS

    6.通过pip安装TensorFlow

    6.1安装过程

    pip是Python包管理工具,可以很方便的安装一些软件。我们在安装Python的时候已经自动安装了pip,现在可以直接在CMD中执行以下命令安装TensorFlow。

    CPU版本: pip install tensorflow

    GPU版本: pip install tensorflow-gpu

    注意:安装python新版本后,可能会不带pip因此需要先安装pip,然后再安装tensorflow

    pip安装方法:

    python -m ensurepip  //安装pip

    python -m pip install tensorflow //安装TF for CPU框架

    python -m pip install tensorflow-gpu //安装TF for GPU框架

    6.2验证

    python

    >>> import tensorflow as tf

    >>> hello = tf.constant('Hello, TensorFlow!')

    >>> sess = tf.Session() //看到GPU显存信息

    >>> print(sess.run(hello))

    7 通过Anaconda安装TensorFlow

    7.1 安装Anaconda

    下载Anaconda中最新版本:https://www.anaconda.com/download/

    7.2 打开conda客户端,构建conda环境

    C:> conda create -n tensorflow python=3.6

    7.3 激活conda环境

    C:> activate tensorflow

    7.4 安装框架

    (tensorflow)C:> pip install --ignore-installed --upgrade tensorflow //安装TF for CPU框架

    (tensorflow)C:> pip install --ignore-installed --upgrade tensorflow-gpu //安装TF for GPU框架

    7.5 conda环境中验证

    python

    >>> import tensorflow as tf

    >>> hello = tf.constant('Hello, TensorFlow!')

    >>> sess = tf.Session() //看到GPU显存信息

    >>> print(sess.run(hello))

    8.完成

    相关文章

      网友评论

        本文标题:Windows 2012 安装Tensorflow

        本文链接:https://www.haomeiwen.com/subject/zvcgsxtx.html