美文网首页
cs231n:assignment2——python文件:cnn

cs231n:assignment2——python文件:cnn

作者: X_Y | 来源:发表于2017-04-21 17:34 被阅读263次

    视频里 Andrej Karpathy上课的时候说,这次的作业meaty but educational,确实很meaty,作业一般是由.ipynb文件和.py文件组成,这次因为每个.ipynb文件涉及到的.py文件较多,且互相之间有交叉,所以每篇博客只贴出一个.ipynb或者一个.py文件.(因为之前的作业由于是一个.ipynb文件对应一个.py文件,所以就整合到一篇博客里)
    还是那句话,有错误希望帮我指出来,多多指教,谢谢

    cnn.py内容:

    import numpy as np
    
    from cs231n.layers import *
    from cs231n.fast_layers import *
    from cs231n.layer_utils import *
    
    
    class ThreeLayerConvNet(object):
      """
      A three-layer convolutional network with the following architecture:
    
      conv - relu - 2x2 max pool - affine - relu - affine - softmax
    
      The network operates on minibatches of data that have shape (N, C, H, W)
      consisting of N images, each with height H and width W and with C input
      channels.
      """
    
      def __init__(self, input_dim=(3, 32, 32), num_filters=32, filter_size=7,
                   hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0,
                   dtype=np.float32):
        """
        Initialize a new network.
    
        Inputs:
        - input_dim: Tuple (C, H, W) giving size of input data
        - num_filters: Number of filters to use in the convolutional layer
        - filter_size: Size of filters to use in the convolutional layer
        - hidden_dim: Number of units to use in the fully-connected hidden layer
        - num_classes: Number of scores to produce from the final affine layer.
        - weight_scale: Scalar giving standard deviation for random initialization
          of weights.
        - reg: Scalar giving L2 regularization strength
        - dtype: numpy datatype to use for computation.
        """
        self.params = {}
        self.reg = reg
        self.dtype = dtype
    
        ############################################################################
        # TODO: Initialize weights and biases for the three-layer convolutional    #
        # network. Weights should be initialized from a Gaussian with standard     #
        # deviation equal to weight_scale; biases should be initialized to zero.   #
        # All weights and biases should be stored in the dictionary self.params.   #
        # Store weights and biases for the convolutional layer using the keys 'W1' #
        # and 'b1'; use keys 'W2' and 'b2' for the weights and biases of the       #
        # hidden affine layer, and keys 'W3' and 'b3' for the weights and biases   #
        # of the output affine layer.                                              #
        ############################################################################
        self.params['W1'] = weight_scale * np.random.randn(num_filters,\
                                                            input_dim[0],\
                                                            filter_size,\
                                                            filter_size)
        self.params['b1'] = np.zeros(num_filters)
        self.params['W2'] = weight_scale * np.random.randn(\
                            num_filters * input_dim[1] * input_dim[2] / 4, \
                            hidden_dim)
        self.params['b2'] = np.zeros(hidden_dim)
        self.params['W3'] = weight_scale * np.random.randn(hidden_dim, num_classes)
        self.params['b3'] = np.zeros(num_classes)
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################
    
        for k, v in self.params.iteritems():
          self.params[k] = v.astype(dtype)
    
    
      def loss(self, X, y=None):
        """
        Evaluate loss and gradient for the three-layer convolutional network.
    
        Input / output: Same API as TwoLayerNet in fc_net.py.
        """
        W1, b1 = self.params['W1'], self.params['b1']
        W2, b2 = self.params['W2'], self.params['b2']
        W3, b3 = self.params['W3'], self.params['b3']
    
        # pass conv_param to the forward pass for the convolutional layer
        filter_size = W1.shape[2]
        conv_param = {'stride': 1, 'pad': (filter_size - 1) / 2}
    
        # pass pool_param to the forward pass for the max-pooling layer
        pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2}
    
        scores = None
        ############################################################################
        # TODO: Implement the forward pass for the three-layer convolutional net,  #
        # computing the class scores for X and storing them in the scores          #
        # variable.                                                                #
        ############################################################################
        a1, cache1= conv_relu_pool_forward(X, W1, b1, conv_param, pool_param)
        a1_reshape = a1.reshape(a1.shape[0], -1)
        a2, cache2 = affine_relu_forward(a1_reshape, W2, b2)
        scores, cache3 = affine_forward(a2, W3, b3)
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################
    
        if y is None:
          return scores
    
        loss, grads = 0, {}
        ############################################################################
        # TODO: Implement the backward pass for the three-layer convolutional net, #
        # storing the loss and gradients in the loss and grads variables. Compute  #
        # data loss using softmax, and make sure that grads[k] holds the gradients #
        # for self.params[k]. Don't forget to add L2 regularization!               #
        ############################################################################
        loss_without_reg, dscores = softmax_loss(scores, y)
        loss = loss_without_reg + \
                0.5 * self.reg * (np.sum(W1**2) + np.sum(W2**2) + np.sum(W3**2))
        da2, grads['W3'], grads['b3'] = affine_backward(dscores, cache3)
        grads['W3'] += self.reg * cache3[1]
        da1, grads['W2'], grads['b2'] = affine_relu_backward(da2, cache2)
        grads['W2'] += self.reg * cache2[0][1]
        da1_reshape = da1.reshape(*a1.shape)
        dx, grads['W1'], grads['b1'] = conv_relu_pool_backward(da1_reshape, cache1)
        grads['W1'] += self.reg * cache1[0][1]
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################
    
        return loss, grads
    
    ################################################################################
    #                             add by xieyi                                     #
    ################################################################################
    
    class ConvNetArch_1(object):
      """
      A arbitrary number of hidden layers convolutional network with the following
      architecture:
    
      [conv-relu-pool]xN - [conv - relu] - [affine]xM - [softmax or SVM]
    
      [conv-relu-pool]XN - [affine]XM - [softmax or SVM]
    
      ' - [conv - relu] - ' can be trun on/off by parameter 'connect_conv'
      both architecture can do with or without batch normalization
    
      The network operates on minibatches of data that have shape (N, C, H, W)
      consisting of N images, each with height H and width W and with C input
      channels.
      The learnable parameters of the model are stored in the dictionary self.params
      that maps parameter names to numpy arrays.
      """
    
      def __init__(self, conv_dims, hidden_dims, input_dim=(3, 32, 32), connect_conv = 0,
                   use_batchnorm=False, num_classes=10, loss_fuction='softmax',
                   weight_scale=1e-3, reg=0.0, dtype=np.float32):
        """
        Initialize a new network.
    
        Inputs:
        - input_dim: Tuple (C, H, W) giving size of input data
        - conv_dims: List of tuple[(filters_num, filter_size)*N] Number of filters
          and filter_size in convolutional layers
        - connect_conv: Whether or not the conv - relu should implement to connect
          [conv-relu-pool]xN and [affine]xM
        - hidden_dims: Number of units to use in the fully-connected hidden layer
        - num_classes: Number of scores to produce from the final affine layer.
        - loss_fuction: type of loss function
        - weight_scale: Scalar giving standard deviation for random initialization
          of weights.
        - reg: Scalar giving L2 regularization strength
        - dtype: numpy datatype to use for computation.
        """
        self.num_conv_layers = len(conv_dims)
        self.num_fc_layers = len(hidden_dims)
        self.use_connect_conv = connect_conv>0
        self.use_batchnorm = use_batchnorm
        self.loss_fuction = loss_fuction
        self.reg = reg
        self.dtype = dtype
        self.params = {}
        ############################################################################
        # Initialize weights and biases for the  convolutional                     #
        # network. Weights should be initialized from a Gaussian with standard     #
        # deviation equal to weight_scale; biases should be initialized to zero.   #
        # All weights and biases should be stored in the dictionary self.params.   #
        # Store weights and biases for the convolutional layer using the keys 'CW1'#
        # and 'cb1'; use keys 'FW1' and 'fb1' for the weights and biases of the    #
        # hidden fully connectedNet layers, 'CCW' and 'ccb' for connect_conv layer #
        ############################################################################
    
        # initialize conv_layers:
        for i in xrange(self.num_conv_layers):
          if i==0:
            self.params['CW1'] = weight_scale * np.random.randn(\
                                      conv_dims[i][0],\
                                      input_dim[0],\
                                      conv_dims[i][1],\
                                      conv_dims[i][1])
            self.params['cb1'] = np.zeros(conv_dims[i][0])
            #print self.params['CW1'].shape,self.params['cb1'].shape
            if use_batchnorm:
              self.params['cgamma1'] = np.ones(conv_dims[i][0])
              self.params['cbeta1'] = np.zeros(conv_dims[i][0])
    
          else:
            self.params['CW'+str(i+1)] = weight_scale * np.random.randn(\
                                      conv_dims[i][0],\
                                      conv_dims[i-1][0],\
                                      conv_dims[i][1],\
                                      conv_dims[i][1])
            self.params['cb'+str(i+1)] = np.zeros(conv_dims[i][0])
            if use_batchnorm:
              self.params['cgamma'+str(i+1)] = np.ones(conv_dims[i][0])
              self.params['cbeta'+str(i+1)] = np.zeros(conv_dims[i][0])
    
        if self.use_connect_conv:
          self.params['CCW'] = weight_scale * np.random.randn(\
                                      connect_conv[0],\
                                      conv_dims[-1][0],\
                                      connect_conv[1],\
                                      connect_conv[1])
          self.params['ccb'] = np.zeros(connect_conv[0])
          if self.use_batchnorm:
            self.params['ccgamma'] = np.ones(connect_conv[0])
            self.params['ccbeta'] = np.zeros(connect_conv[0])
    
        #initialize affine layers:
        for i in xrange(self.num_fc_layers):
            if i == 0:
              #initialize first affine layers
              if self.use_connect_conv:
                self.params['FW'+str(i+1)] = weight_scale * np.random.randn(
                   connect_conv[0]*input_dim[1]*input_dim[2]/4**self.num_conv_layers,
                   hidden_dims[i])
              else:
                self.params['FW'+str(i+1)] = weight_scale * np.random.randn(
                   conv_dims[-1][0]*input_dim[1]*input_dim[2]/4**self.num_conv_layers,
                   hidden_dims[i])
              self.params['fb'+str(i+1)] = np.zeros(hidden_dims[i])
              #initialize first batch normalize layers
              if self.use_batchnorm:
                self.params['fgamma'+str(i+1)] = np.ones(hidden_dims[i])
                self.params['fbeta'+str(i+1)] = np.zeros(hidden_dims[i])
            elif i == self.num_fc_layers-1:
              #initialize last affine layers
              self.params['FW'+str(i+1)] = \
                  weight_scale * np.random.randn(hidden_dims[i-1], num_classes)
              self.params['fb'+str(i+1)] = np.zeros(num_classes)
              if self.use_batchnorm:
                self.params['fgamma'+str(i+1)] = np.ones(num_classes)
                self.params['fbeta'+str(i+1)] = np.zeros(num_classes)
            else:
              #initialize  affine layers
              self.params['FW'+str(i+1)] = \
                  weight_scale * np.random.randn(hidden_dims[i-1], hidden_dims[i])
              self.params['fb'+str(i+1)] = np.zeros(hidden_dims[i])
              #initialize batch normalize layers
              if self.use_batchnorm:
                self.params['fgamma'+str(i+1)] = np.ones(hidden_dims[i])
                self.params['fbeta'+str(i+1)] = np.zeros(hidden_dims[i])
    
        # pass conv_params to the forward pass for the convolutional layer
        self.conv_params = []
        self.conv_params = [{'stride': 1, 'pad': (conv_dims[i][1] - 1) / 2}\
                            for i in xrange(self.num_conv_layers)]
        if self.use_connect_conv:
          self.conv_params.append({'stride': 1, 'pad': (connect_conv[1] - 1) / 2})
        # pass pool_param to the forward pass for the max-pooling layer
        self.pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2}
        # With batch normalization we need to keep track of running means and
        # variances, so we need to pass a special bn_param object to each batch
        # normalization layer. You should pass self.bn_params[0] to the forward pass
        # of the first batch normalization layer, self.bn_params[1] to the forward
        # pass of the second batch normalization layer, etc.
        self.sbn_params = []
        if self.use_batchnorm:
          self.sbn_params = [{'mode': 'train'} for i in xrange(self.num_conv_layers)]
          if self.use_connect_conv:
            self.sbn_params.append({'mode': 'train'})
        self.bn_params = []
        if self.use_batchnorm:
          self.bn_params = [{'mode': 'train'} for i in xrange(self.num_fc_layers)]
    
        # Cast all parameters to the correct datatype
        for k, v in self.params.iteritems():
          self.params[k] = v.astype(dtype)
    
      def loss(self, X, y=None):
        """
        Evaluate loss and gradient for the three-layer convolutional network.
    
        Input / output: Same API as TwoLayerNet in fc_net.py.
        """
        X = X.astype(self.dtype)
        mode = 'test' if y is None else 'train'
    
        # Set train/test mode for batchnorm params since they
        # behave differently during training and testing.
        if self.use_batchnorm:
          for bn_param in self.bn_params:
            bn_param['mode'] = mode
          for bn_param in self.sbn_params:
            bn_param['mode'] = mode
            # bn_param[mode] = mode
            # the original CODE is right above, BUT I think it's wrong
          if self.use_connect_conv:
            self.sbn_params[-1]['mode'] = mode
    
        scores = None
        ############################################################################
        # Implement the forward pass for the three-layer convolutional net,        #
        # computing the class scores for X and storing them in the scores          #
        # variable.                                                                #
        ############################################################################
        a = X
        cache = []
        #conv_forward:
        for i in xrange(self.num_conv_layers):
          if self.use_batchnorm:
            a_temp, cache_temp = conv_bn_relu_pool_forward(a,\
                                            self.params['CW'+str(i+1)], \
                                            self.params['cb'+str(i+1)], \
                                            self.params['cgamma'+str(i+1)], \
                                            self.params['cbeta'+str(i+1)], \
                                            self.conv_params[i], \
                                            self.pool_param,\
                                            self.sbn_params[i])
            a = a_temp
            cache.append(cache_temp)
          else:
            a_temp, cache_temp = conv_relu_pool_forward(a,\
                                            self.params['CW'+str(i+1)], \
                                            self.params['cb'+str(i+1)], \
                                            self.conv_params[i], \
                                            self.pool_param)
            a = a_temp
            cache.append(cache_temp)
    
        #connect_conv_forward
        if self.use_connect_conv:
          if self.use_batchnorm:
            # conv_forward:
            a_temp, cache_temp = conv_forward_fast(a, \
                                            self.params['CCW'], \
                                            self.params['ccb'], \
                                            self.conv_params[-1])
            a = a_temp
            cache.append(cache_temp)
    
            # spatial_batchnorm_forward:
            a_temp, cache_temp = spatial_batchnorm_forward(a, \
                                            self.params['ccgamma'], \
                                            self.params['ccbeta'], \
                                            self.sbn_params[-1])
            a = a_temp
            cache.append(cache_temp)
    
            # Rulu forward:
            a_temp, cache_temp = relu_forward(a)
            a = a_temp
            cache.append(cache_temp)
          else:
            a_temp, cache_temp = conv_relu_forward(a, \
                                            self.params['CCW'], \
                                            self.params['ccb'], \
                                            self.conv_params[-1])
            a = a_temp
            cache.append(cache_temp)
    
        #affine forward:
        N = X.shape[0]
        x_temp_shape = a.shape
        for i in xrange(self.num_fc_layers):
          a_temp, cache_temp = affine_forward(a.reshape(N, -1), \
                                              self.params['FW'+str(i+1)], \
                                              self.params['fb'+str(i+1)])
          a = a_temp
          cache.append(cache_temp)
          if self.use_batchnorm:
            a_temp, cache_temp = batchnorm_forward(a, \
                                              self.params['fgamma'+str(i+1)], \
                                              self.params['fbeta'+str(i+1)],
                                              self.bn_params[i])
            a = a_temp
            cache.append(cache_temp)
        scores = a
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################
    
        if mode == 'test':
          return scores
    
        loss, grads = 0, {}
        ############################################################################
        # Implement the backward pass for the three-layer convolutional net,       #
        # storing the loss and gradients in the loss and grads variables. Compute  #
        # data loss using softmax or svm_loss, and make sure that grads[k] holds   #
        # the gradients for self.params[k]. Don't forget to add L2 regularization! #
        ############################################################################
        # compute loss:
        if self.loss_fuction=='softmax':
          loss_without_reg, dscores = softmax_loss(scores, y)
        elif self.loss_fuction=='svm_loss':
          loss_without_reg, dscores = svm_loss(scores, y)
        loss = loss_without_reg
        for i in xrange(self.num_conv_layers):
          loss += 0.5*self.reg*np.sum(self.params['CW'+str(i+1)]**2)
        if self.use_connect_conv:
          loss += 0.5*self.reg*np.sum(self.params['CCW']**2)
        for i in xrange(self.num_fc_layers):
          loss += 0.5*self.reg*np.sum(self.params['FW'+str(i+1)]**2)
    
        #### compute fully-connected layers grads{}
        dout = dscores
        for i in reversed(xrange(self.num_fc_layers)):
          if self.use_batchnorm:
            dout_temp, grads['fgamma'+str(i+1)], grads['fbeta'+str(i+1)] = \
                          batchnorm_backward(dout, cache.pop(-1))
            dout = dout_temp
          dout_temp, grads['FW'+str(i+1)], grads['fb'+str(i+1)] = \
                          affine_backward(dout, cache.pop(-1))
          dout = dout_temp
    
        # compute connect conv_layer grads{}
        dout = dout.reshape(x_temp_shape)
        if self.use_connect_conv:
          if self.use_batchnorm:
            dout_temp = relu_backward(dout, cache.pop(-1))
            dout = dout_temp
            dout_temp, grads['ccgamma'], grads['ccbeta'] = \
                spatial_batchnorm_backward(dout, cache.pop(-1))
            dout = dout_temp
            dout_temp, grads['CCW'], grads['ccb'] = \
              conv_backward_fast(dout, cache.pop(-1))
            dout = dout_temp
          else:
            dout_temp, grads['CCW'], grads['ccb'] = \
                conv_relu_backward(dout, cache.pop(-1))
            dout = dout_temp
    
        # compute conv_layers grads{}
        for i in reversed(xrange(self.num_conv_layers)):
          if self.use_batchnorm:
            dout_temp, grads['CW'+str(i+1)], grads['cb'+str(i+1)], \
              grads['cgamma'+str(i+1)], grads['cbeta'+str(i+1)] =  \
                          conv_bn_relu_pool_backward(dout, cache.pop(-1))
            dout = dout_temp
          else:
            dout_temp, grads['CW'+str(i+1)], grads['cb'+str(i+1)] =  \
                          conv_relu_pool_backward(dout, cache.pop(-1))
            dout = dout_temp
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################
    
        return loss, grads
    
    

    相关文章

      网友评论

          本文标题:cs231n:assignment2——python文件:cnn

          本文链接:https://www.haomeiwen.com/subject/zxzdzttx.html