美文网首页
创建型模式

创建型模式

作者: 谁在烽烟彼岸 | 来源:发表于2019-02-22 16:04 被阅读0次

从这一块开始,我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析。

首先,简单工厂模式不属于23中设计模式,简单工厂一般分为:普通简单工厂、多方法简单工厂、静态方法简单工厂。

0、简单工厂模式

简单工厂模式模式分为三种:

01、普通

就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:

普通工厂类

举例如下:(我们举一个发送消息的栗子)
首先,创建二者的共同接口:

 public interface Sender {  
    public void send();  
  }  

其次,创建实现类:

public class MailSender implements Sender {  
    @Override  
    public void send() {  
      System.out.println("this is mailsender!");  
    }  
 }  
public class SmsSender implements Sender {  
    @Override  
    public void send() {  
      System.out.println("this is sms sender!");  
    }  
}  

最后,建工厂类:

public class SendFactory {  
    public Sender produce(String type) {  
        if ("mail".equals(type)) {  
          return new MailSender();  
        } else if ("sms".equals(type)) {  
          return new SmsSender();  
        } else {  
          System.out.println("请输入正确的类型!");  
          return nul ;  
        }  
    }  
}  

我们来测试下:

public class FactoryTest {  
    public static void main(String[] args) {  
       SendFactory factory = new SendFactory();  
       Sender sender = factory.produce("sms");  
       sender.send();  
    }  
}  

输出:this is sms sender!

02、多个方法

是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:

多个方法工厂类

03、多个静态方法

将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

public class SendFactory {  
    public static Sender produceMail(){  
        return new MailSender();  
    }  
    public static Sender produceSms(){  
      return new SmsSender();  
   }  
}  

总体来说,工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。在以上的三种模式中,第一种如果传入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态工厂方法模式。

1、工厂方法模式(Factory Method)

简单工厂模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑,有一定的问题,如何解决?就用到工厂方法模式,创建一个工厂接口和创建多个工厂实现类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。


工厂方法模式

代码示例:

public interface Sender {  
    public void send();  
}  

两个实现类:

public class MailSender implements Sender {  
    @Override  
      public void send() {  
         System.out.println("this is mailsender!");  
     }  
}  
public class SmsSender implements Sender {  
   @Override  
    public void send() {  
      System.out.println("this is sms sender!");  
    }  
}  

两个工厂类:

public class SendMailFactory implements Provider{  
    @Override  
     public Sender produce(){  
        return new MailSender();  
     }  
}  
public class SendSmsFactory implements Provider {  
     @Override  
      public Sender produce() {  
          return new SmsSender();  
      }  
}  

在提供一个接口:

public interface Provider {  
      public Sender produce();  
}  

测试类:

public class Test {  
    public static void main(String[] args) {  
        Provider provider = new SendMailFactory();  
        Sender sender = provider.produce();  
        sender.send();  
    }  
}  

其实这个模式的好处就是,如果你现在想增加一个功能:发及时信息,则只需做一个实现类,实现Sender接口,同时做一个工厂类,实现Provider接口,就OK了,无需去改动现成的代码。这样做,拓展性较好!

2、抽象工厂模式

工厂方法模式和抽象工厂模式不好分清楚,他们的区别如下:
工厂方法模式:
一个抽象产品类,可以派生出多个具体产品类。
一个抽象工厂类,可以派生出多个具体工厂类。
每个具体工厂类只能创建一个具体产品类的实例。

抽象工厂模式:
多个抽象产品类,每个抽象产品类可以派生出多个具体产品类。
一个抽象工厂类,可以派生出多个具体工厂类。
每个具体工厂类可以创建多个具体产品类的实例,也就是创建的是一个产品线下的多个产品。

区别:
工厂方法模式只有一个抽象产品类,而抽象工厂模式有多个。
工厂方法模式的具体工厂类只能创建一个具体产品类的实例,而抽象工厂模式可以创建多个。
工厂方法创建 "一种" 产品,他的着重点在于"怎么创建",也就是说如果你开发,你的大量代码很可能围绕着这种产品的构造,初始化这些细节上面。也因为如此,类似的产品之间有很多可以复用的特征,所以会和模版方法相随。

抽象工厂需要创建一些列产品,着重点在于"创建哪些"产品上,也就是说,如果你开发,你的主要任务是划分不同差异的产品线,并且尽量保持每条产品线接口一致,从而可以从同一个抽象工厂继承。

对于java来说,你能见到的大部分抽象工厂模式都是这样的:
---它的里面是一堆工厂方法,每个工厂方法返回某种类型的对象。

比如说工厂可以生产鼠标和键盘。那么抽象工厂的实现类(它的某个具体子类)的对象都可以生产鼠标和键盘,但可能工厂A生产的是罗技的键盘和鼠标,工厂B是微软的。

这样A和B就是工厂,对应于抽象工厂;
每个工厂生产的鼠标和键盘就是产品,对应于工厂方法;

用了工厂方法模式,你替换生成键盘的工厂方法,就可以把键盘从罗技换到微软。但是用了抽象工厂模式,你只要换家工厂,就可以同时替换鼠标和键盘一套。如果你要的产品有几十个,当然用抽象工厂模式一次替换全部最方便(这个工厂会替你用相应的工厂方法)

所以说抽象工厂就像工厂,而工厂方法则像是工厂的一种产品生产线

3、单例模式(Singleton

单例对象(Singleton)是一种常用的设计模式。在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:

1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。

2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。

3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。

首先我们写一个简单的单例类:

public class Singleton {  
    /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */  
    private static Singleton instance =  null;  
    /* 私有构造方法,防止被实例化 */  
    private Singleton() {}  
    /* 静态工程方法,创建实例 */  
    public static Singleton getInstance() {  
        if (instance == null) {  
            instance = new Singleton();  
        }  
        return instance;  
    }  
    /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */  
    public Object readResolve() {  
      return instance;  
    }  
}  

这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:

public static synchronized Singleton getInstance() {  
    if(instance == null) {  
       instance = new Singleton();  
    }  
    return instance;  
}  

但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:

public static Singleton getInstance() {  
    if(instance == null) {  
      synchronized (instance) {  
        if (instance == null) {  
            instance =  new Singleton();  
        }  
      }  
   }  
    return instance;  
}  

似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:

  • a> A、B线程同时进入了第一个if判断
  • b> A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();
  • c> 由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。
  • d> B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。
  • e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。

所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:

private static class SingletonFactory{           
    private static Singleton instance =  new Singleton();                    
    public static Singleton getInstance(){           
        return SingletonFactory.instance;
    }           
}   

实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:

public class Singleton {  
    /* 私有构造方法,防止被实例化 */  
    private Singleton() {  }  
    /* 此处使用一个内部类来维护单例 */  
    private static class SingletonFactory {  
        private static Singleton instance = new Singleton();  
 }  
     /* 获取实例 */  
    public static Singleton getInstance() {  
        return SingletonFactory.instance;  
     }  
    /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */  
    public Object readResolve() {  
        return getInstance();  
    }  
}  

其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:

public class SingletonTest {  
    private static SingletonTest instance = null;  
    private SingletonTest() {  }  
    private static synchronized void syncInit() {  
        if (instance ==  null) {  
           instance = new SingletonTest();  
        }  
    }  
    public static SingletonTest getInstance() {  
        if (instance == null) {  
            syncInit();  
        }  
        return instance;  
    }  
}  

考虑性能的话,整个程序只需创建一次实例,所以性能也不会有什么影响。

**补充:
通常,为了实现配置信息的实时更新,会有一个线程不停检测配置文件或配置数据库的内容,一旦发现变化,就更新到单例对象的属性中。在更新这些信息的时候,很可能还会有其他线程正在读取这些信息,造成意想不到的后果。还是以通过单例对象属性停止线程服务为例,如果更新属性时读写不同步,可能访问该属性时这个属性正好为空(null),程序就会抛出异常。

采用"影子实例"的办法为单例对象的属性同步更新**

public class SingletonTest {  
    private static SingletonTest instance = null;  
    private Vector properties = null;  
    public Vector getProperties() {  
      return properties;  
    }  
    private SingletonTest() {  
    }  
    private static synchronized void syncInit() {  
        if (instance == null) {  
             instance = new SingletonTest();  
         }  
    }  
    public static SingletonTest getInstance() {  
        if (instance == null) {  
            syncInit();  
        }  
        return instance;  
    }  
    public void updateProperties() {  
        SingletonTest shadow = new SingletonTest();  
        properties = shadow.getProperties();  
    }  
}  

通过单例模式的学习告诉我们:

1、单例模式理解起来简单,但是具体实现起来还是有一定的难度。

2、synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。

到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?

首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)

其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。

再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。

最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!

4、建造者模式(Builder)

工厂类模式提供的是创建单个类的模式,而建造者模式则是将各种产品集中起来进行管理,用来创建复合对象,所谓复合对象就是指某个类具有不同的属性,其实建造者模式就是前面抽象工厂模式和最后的Test结合起来得到的。我们看一下代码:

还和前面一样,一个Sender接口,两个实现类MailSender和SmsSender。最后,建造者类如下:

public class Builder {
    private List<Sender> list = new ArrayList<Sender>();
    public void produceMailSender(int count){
        for(int i=0; i<count; i++){
          list.add(new MailSender());
        }
        for(Sender s: list){
                    s.send();
        }
    }
    public void produceSmsSender(int count){
        for(int i=0; i<count; i++){
          list.add(new SmsSender());
        }
       for(Sender s: list){
              s.send();
        }
    }
}

测试类:

public class Test {
  static void main(String[] args) {
        Builder builder = new Builder();
        builder.produceMailSender(10);
    }
}

从这点看出,建造者模式将很多功能集成到一个类里,这个类可以创造出比较复杂的东西。所以与工程模式的区别就是:工厂模式关注的是创建单个产品,而建造者模式则关注创建符合对象,多个部分。因此,是选择工厂模式还是建造者模式,依实际情况而定。

5、原型模式(Prototype)

原型模式虽然是创建型的模式,但是与工程模式没有关系,从名字即可看出,该模式的思想就是将一个对象作为原型,对其进行复制、克隆,产生一个和原对象类似的新对象。本小结会通过对象的复制,进行讲解。在Java中,复制对象是通过clone()实现的,先创建一个原型类:

public class Prototype implements Cloneable {  
    public Object clone()  throws CloneNotSupportedException {  
        Prototype proto = (Prototype) super.clone();  
        return proto;  
    }  
}  

很简单,一个原型类,只需要实现Cloneable接口,覆写clone方法,此处clone方法可以改成任意的名称,因为Cloneable接口是个空接口,你可以任意定义实现类的方法名,如cloneA或者cloneB,因为此处的重点是super.clone()这句话,super.clone()调用的是Object的clone()方法,而在Object类中,clone()是native的,此处不再深究。在这儿,我将结合对象的浅复制和深复制来说一下,首先需要了解对象深、浅复制的概念:

浅复制:将一个对象复制后,基本数据类型的变量都会重新创建,而引用类型,指向的还是原对象所指向的。

深复制:将一个对象复制后,不论是基本数据类型还有引用类型,都是重新创建的。简单来说,就是深复制进行了完全彻底的复制,而浅复制不彻底。

此处,写一个深浅复制的例子:

public class Prototype implements Cloneable, Serializable{  
    private static final long serialVersionUID = 1L;  
    private String string;  
    private SerializableObject obj;  
    /* 浅复制 */  
    public Object clone() throws CloneNotSupportedException {  
        Prototype proto = (Prototype)  super.clone();  
        return proto;  
    }  
     /* 深复制 */  
    public Object deepClone() throws IOException,  ClassNotFoundException {  
        /* 写入当前对象的二进制流 */  
        ByteArrayOutputStream bos =  new ByteArrayOutputStream();  
        ObjectOutputStream oos = new ObjectOutputStream(bos);  
        oos.writeObject(this);  

         /* 读出二进制流产生的新对象 */  
        ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());  
        ObjectInputStream ois = new ObjectInputStream(bis);  
        return ois.readObject();  
    }  

    public String getString() {  
        return string;  
     }  
    public void setString(String string) {  
        this.string = string;  
     }  

    public SerializableObject getObj() {  
        return obj;  
    }  

    public void setObj(SerializableObject obj) {  
        this.obj = obj;  
    }  
}  
class SerializableObject implements Serializable {  
    private static final long serialVersionUID = 1L;  
}  

要实现深复制,需要采用流的形式读入当前对象的二进制输入,再写出二进制数据对应的对象。

转自:http://blog.csdn.net/zhangerqing

相关文章

  • 23种设计模式总结一

    23 种经典设计模式共分为 3 种类型,分别是创建型、结构型和行为型。 一、创建型设计模式 创建型设计模式包括:单...

  • 设计模式之工厂模式

    设计模式中主要分为三大类:创建型、结构型、行为型 工厂模式属于创建型,顾名思义,创建型模式关注对象的创建过程,它将...

  • 创建型设计模式总结

    创建型设计模式总结 Intro 前面几篇文章已经把创建型设计模式都介绍了,来做一个简单的总结。 创建型设计模式,就...

  • 设计模式--分类

    一、设计模式的分类设计模式可以概括为23种,按照特点可以将其分为三大类型:创建型、结构型、行为型。1、创建型创建型...

  • 《设计模式之美》- 23种设计模式

    学习《设计模式之美》笔记。 23 种经典设计模式共分为 3 种类型,分别是创建型、结构型和行为型 创建型模式 创建...

  • 设计模式简单总结(待完善)

    设计模式简单总结 设计模式可以分为:创建型,结构型,行为型三种模式。 1 创建型模式 1.1 单例模式 用来指定某...

  • 手绘设计模式结构图

    GoF的设计模式一共23个,可以分为3大类:创建型、结构型和行为型,这篇文章主要讨论创建型。 创建型的设计模式包括...

  • 设计模式(行为型)-- 观察者模式

    我们常把 23 种经典的设计模式分为三类:创建型、结构型、行为型。创建型设计模式主要解决“对象的创建”问题,结构型...

  • 建造者设计模式-Builder design pattern

    建造者设计模式是创建型设计模式的一种。创建型设计模式处理对象创建的问题。 建造者设计模式,用来构建需要经过若干个建...

  • 23种模式 - 总结

    创建型设计模式 创建型设计模式主要解决对象的创建问题,封装复杂的创建过程,解耦对象的创建代码和使用代码。包括:单例...

网友评论

      本文标题:创建型模式

      本文链接:https://www.haomeiwen.com/subject/zypsyqtx.html