美文网首页
gpu版本相位相关

gpu版本相位相关

作者: 寽虎非虫003 | 来源:发表于2021-07-26 15:29 被阅读0次

零、序言

opencv提供了有相位相关的计算代码,但是只有cpu的版本,速度虽然不错,但是也不满足需求,于是想做gpu版本的;

一、cpu版本

cv::Point2d cv::phaseCorrelate(InputArray _src1, InputArray _src2, InputArray _window, double* response)
{
    CV_INSTRUMENT_REGION();

    Mat src1 = _src1.getMat();
    Mat src2 = _src2.getMat();
    Mat window = _window.getMat();

    CV_Assert( src1.type() == src2.type());
    CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_64FC1 );
    CV_Assert( src1.size == src2.size);

    if(!window.empty())
    {
        CV_Assert( src1.type() == window.type());
        CV_Assert( src1.size == window.size);
    }

    int M = getOptimalDFTSize(src1.rows);
    int N = getOptimalDFTSize(src1.cols);

    Mat padded1, padded2, paddedWin;

    if(M != src1.rows || N != src1.cols)
    {
        copyMakeBorder(src1, padded1, 0, M - src1.rows, 0, N - src1.cols, BORDER_CONSTANT, Scalar::all(0));
        copyMakeBorder(src2, padded2, 0, M - src2.rows, 0, N - src2.cols, BORDER_CONSTANT, Scalar::all(0));

        if(!window.empty())
        {
            copyMakeBorder(window, paddedWin, 0, M - window.rows, 0, N - window.cols, BORDER_CONSTANT, Scalar::all(0));
        }
    }
    else
    {
        padded1 = src1;
        padded2 = src2;
        paddedWin = window;
    }

    Mat FFT1, FFT2, P, Pm, C;

    // perform window multiplication if available
    if(!paddedWin.empty())
    {
        // apply window to both images before proceeding...
        multiply(paddedWin, padded1, padded1);
        multiply(paddedWin, padded2, padded2);
    }

    // execute phase correlation equation
    // Reference: http://en.wikipedia.org/wiki/Phase_correlation
    dft(padded1, FFT1, DFT_REAL_OUTPUT);
    dft(padded2, FFT2, DFT_REAL_OUTPUT);

    mulSpectrums(FFT1, FFT2, P, 0, true);

    magSpectrums(P, Pm);
    divSpectrums(P, Pm, C, 0, false); // FF* / |FF*| (phase correlation equation completed here...)

    idft(C, C); // gives us the nice peak shift location...

    fftShift(C); // shift the energy to the center of the frame.

    // locate the highest peak
    Point peakLoc;
    minMaxLoc(C, NULL, NULL, NULL, &peakLoc);

    // get the phase shift with sub-pixel accuracy, 5x5 window seems about right here...
    Point2d t;
    t = weightedCentroid(C, peakLoc, Size(5, 5), response);

    // max response is M*N (not exactly, might be slightly larger due to rounding errors)
    if(response)
        *response /= M*N;

    // adjust shift relative to image center...
    Point2d center((double)padded1.cols / 2.0, (double)padded1.rows / 2.0);

    return (center - t);
}

但是上面这个函数依赖于4个没有导出的私有函数

namespace cv
{

static void magSpectrums( InputArray _src, OutputArray _dst)
{
    Mat src = _src.getMat();
    int depth = src.depth(), cn = src.channels(), type = src.type();
    int rows = src.rows, cols = src.cols;
    int j, k;

    CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 );

    if(src.depth() == CV_32F)
        _dst.create( src.rows, src.cols, CV_32FC1 );
    else
        _dst.create( src.rows, src.cols, CV_64FC1 );

    Mat dst = _dst.getMat();
    dst.setTo(0);//Mat elements are not equal to zero by default!

    bool is_1d = (rows == 1 || (cols == 1 && src.isContinuous() && dst.isContinuous()));

    if( is_1d )
        cols = cols + rows - 1, rows = 1;

    int ncols = cols*cn;
    int j0 = cn == 1;
    int j1 = ncols - (cols % 2 == 0 && cn == 1);

    if( depth == CV_32F )
    {
        const float* dataSrc = src.ptr<float>();
        float* dataDst = dst.ptr<float>();

        size_t stepSrc = src.step/sizeof(dataSrc[0]);
        size_t stepDst = dst.step/sizeof(dataDst[0]);

        if( !is_1d && cn == 1 )
        {
            for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
            {
                if( k == 1 )
                    dataSrc += cols - 1, dataDst += cols - 1;
                dataDst[0] = dataSrc[0]*dataSrc[0];
                if( rows % 2 == 0 )
                    dataDst[(rows-1)*stepDst] = dataSrc[(rows-1)*stepSrc]*dataSrc[(rows-1)*stepSrc];

                for( j = 1; j <= rows - 2; j += 2 )
                {
                    dataDst[j*stepDst] = (float)std::sqrt((double)dataSrc[j*stepSrc]*dataSrc[j*stepSrc] +
                                                          (double)dataSrc[(j+1)*stepSrc]*dataSrc[(j+1)*stepSrc]);
                }

                if( k == 1 )
                    dataSrc -= cols - 1, dataDst -= cols - 1;
            }
        }

        for( ; rows--; dataSrc += stepSrc, dataDst += stepDst )
        {
            if( is_1d && cn == 1 )
            {
                dataDst[0] = dataSrc[0]*dataSrc[0];
                if( cols % 2 == 0 )
                    dataDst[j1] = dataSrc[j1]*dataSrc[j1];
            }

            for( j = j0; j < j1; j += 2 )
            {
                dataDst[j] = (float)std::sqrt((double)dataSrc[j]*dataSrc[j] + (double)dataSrc[j+1]*dataSrc[j+1]);
            }
        }
    }
    else
    {
        const double* dataSrc = src.ptr<double>();
        double* dataDst = dst.ptr<double>();

        size_t stepSrc = src.step/sizeof(dataSrc[0]);
        size_t stepDst = dst.step/sizeof(dataDst[0]);

        if( !is_1d && cn == 1 )
        {
            for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
            {
                if( k == 1 )
                    dataSrc += cols - 1, dataDst += cols - 1;
                dataDst[0] = dataSrc[0]*dataSrc[0];
                if( rows % 2 == 0 )
                    dataDst[(rows-1)*stepDst] = dataSrc[(rows-1)*stepSrc]*dataSrc[(rows-1)*stepSrc];

                for( j = 1; j <= rows - 2; j += 2 )
                {
                    dataDst[j*stepDst] = std::sqrt(dataSrc[j*stepSrc]*dataSrc[j*stepSrc] +
                                                   dataSrc[(j+1)*stepSrc]*dataSrc[(j+1)*stepSrc]);
                }

                if( k == 1 )
                    dataSrc -= cols - 1, dataDst -= cols - 1;
            }
        }

        for( ; rows--; dataSrc += stepSrc, dataDst += stepDst )
        {
            if( is_1d && cn == 1 )
            {
                dataDst[0] = dataSrc[0]*dataSrc[0];
                if( cols % 2 == 0 )
                    dataDst[j1] = dataSrc[j1]*dataSrc[j1];
            }

            for( j = j0; j < j1; j += 2 )
            {
                dataDst[j] = std::sqrt(dataSrc[j]*dataSrc[j] + dataSrc[j+1]*dataSrc[j+1]);
            }
        }
    }
}

static void divSpectrums( InputArray _srcA, InputArray _srcB, OutputArray _dst, int flags, bool conjB)
{
    Mat srcA = _srcA.getMat(), srcB = _srcB.getMat();
    int depth = srcA.depth(), cn = srcA.channels(), type = srcA.type();
    int rows = srcA.rows, cols = srcA.cols;
    int j, k;

    CV_Assert( type == srcB.type() && srcA.size() == srcB.size() );
    CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 );

    _dst.create( srcA.rows, srcA.cols, type );
    Mat dst = _dst.getMat();

    CV_Assert(dst.data != srcA.data); // non-inplace check
    CV_Assert(dst.data != srcB.data); // non-inplace check

    bool is_1d = (flags & DFT_ROWS) || (rows == 1 || (cols == 1 &&
             srcA.isContinuous() && srcB.isContinuous() && dst.isContinuous()));

    if( is_1d && !(flags & DFT_ROWS) )
        cols = cols + rows - 1, rows = 1;

    int ncols = cols*cn;
    int j0 = cn == 1;
    int j1 = ncols - (cols % 2 == 0 && cn == 1);

    if( depth == CV_32F )
    {
        const float* dataA = srcA.ptr<float>();
        const float* dataB = srcB.ptr<float>();
        float* dataC = dst.ptr<float>();
        float eps = FLT_EPSILON; // prevent div0 problems

        size_t stepA = srcA.step/sizeof(dataA[0]);
        size_t stepB = srcB.step/sizeof(dataB[0]);
        size_t stepC = dst.step/sizeof(dataC[0]);

        if( !is_1d && cn == 1 )
        {
            for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
            {
                if( k == 1 )
                    dataA += cols - 1, dataB += cols - 1, dataC += cols - 1;
                dataC[0] = dataA[0] / (dataB[0] + eps);
                if( rows % 2 == 0 )
                    dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA] / (dataB[(rows-1)*stepB] + eps);
                if( !conjB )
                    for( j = 1; j <= rows - 2; j += 2 )
                    {
                        double denom = (double)dataB[j*stepB]*dataB[j*stepB] +
                                       (double)dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + (double)eps;

                        double re = (double)dataA[j*stepA]*dataB[j*stepB] +
                                    (double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB];

                        double im = (double)dataA[(j+1)*stepA]*dataB[j*stepB] -
                                    (double)dataA[j*stepA]*dataB[(j+1)*stepB];

                        dataC[j*stepC] = (float)(re / denom);
                        dataC[(j+1)*stepC] = (float)(im / denom);
                    }
                else
                    for( j = 1; j <= rows - 2; j += 2 )
                    {

                        double denom = (double)dataB[j*stepB]*dataB[j*stepB] +
                                       (double)dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + (double)eps;

                        double re = (double)dataA[j*stepA]*dataB[j*stepB] -
                                    (double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB];

                        double im = (double)dataA[(j+1)*stepA]*dataB[j*stepB] +
                                    (double)dataA[j*stepA]*dataB[(j+1)*stepB];

                        dataC[j*stepC] = (float)(re / denom);
                        dataC[(j+1)*stepC] = (float)(im / denom);
                    }
                if( k == 1 )
                    dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1;
            }
        }

        for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC )
        {
            if( is_1d && cn == 1 )
            {
                dataC[0] = dataA[0] / (dataB[0] + eps);
                if( cols % 2 == 0 )
                    dataC[j1] = dataA[j1] / (dataB[j1] + eps);
            }

            if( !conjB )
                for( j = j0; j < j1; j += 2 )
                {
                    double denom = (double)(dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps);
                    double re = (double)(dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1]);
                    double im = (double)(dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1]);
                    dataC[j] = (float)(re / denom);
                    dataC[j+1] = (float)(im / denom);
                }
            else
                for( j = j0; j < j1; j += 2 )
                {
                    double denom = (double)(dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps);
                    double re = (double)(dataA[j]*dataB[j] - dataA[j+1]*dataB[j+1]);
                    double im = (double)(dataA[j+1]*dataB[j] + dataA[j]*dataB[j+1]);
                    dataC[j] = (float)(re / denom);
                    dataC[j+1] = (float)(im / denom);
                }
        }
    }
    else
    {
        const double* dataA = srcA.ptr<double>();
        const double* dataB = srcB.ptr<double>();
        double* dataC = dst.ptr<double>();
        double eps = DBL_EPSILON; // prevent div0 problems

        size_t stepA = srcA.step/sizeof(dataA[0]);
        size_t stepB = srcB.step/sizeof(dataB[0]);
        size_t stepC = dst.step/sizeof(dataC[0]);

        if( !is_1d && cn == 1 )
        {
            for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
            {
                if( k == 1 )
                    dataA += cols - 1, dataB += cols - 1, dataC += cols - 1;
                dataC[0] = dataA[0] / (dataB[0] + eps);
                if( rows % 2 == 0 )
                    dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA] / (dataB[(rows-1)*stepB] + eps);
                if( !conjB )
                    for( j = 1; j <= rows - 2; j += 2 )
                    {
                        double denom = dataB[j*stepB]*dataB[j*stepB] +
                                       dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + eps;

                        double re = dataA[j*stepA]*dataB[j*stepB] +
                                    dataA[(j+1)*stepA]*dataB[(j+1)*stepB];

                        double im = dataA[(j+1)*stepA]*dataB[j*stepB] -
                                    dataA[j*stepA]*dataB[(j+1)*stepB];

                        dataC[j*stepC] = re / denom;
                        dataC[(j+1)*stepC] = im / denom;
                    }
                else
                    for( j = 1; j <= rows - 2; j += 2 )
                    {
                        double denom = dataB[j*stepB]*dataB[j*stepB] +
                                       dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + eps;

                        double re = dataA[j*stepA]*dataB[j*stepB] -
                                    dataA[(j+1)*stepA]*dataB[(j+1)*stepB];

                        double im = dataA[(j+1)*stepA]*dataB[j*stepB] +
                                    dataA[j*stepA]*dataB[(j+1)*stepB];

                        dataC[j*stepC] = re / denom;
                        dataC[(j+1)*stepC] = im / denom;
                    }
                if( k == 1 )
                    dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1;
            }
        }

        for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC )
        {
            if( is_1d && cn == 1 )
            {
                dataC[0] = dataA[0] / (dataB[0] + eps);
                if( cols % 2 == 0 )
                    dataC[j1] = dataA[j1] / (dataB[j1] + eps);
            }

            if( !conjB )
                for( j = j0; j < j1; j += 2 )
                {
                    double denom = dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps;
                    double re = dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1];
                    double im = dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1];
                    dataC[j] = re / denom;
                    dataC[j+1] = im / denom;
                }
            else
                for( j = j0; j < j1; j += 2 )
                {
                    double denom = dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps;
                    double re = dataA[j]*dataB[j] - dataA[j+1]*dataB[j+1];
                    double im = dataA[j+1]*dataB[j] + dataA[j]*dataB[j+1];
                    dataC[j] = re / denom;
                    dataC[j+1] = im / denom;
                }
        }
    }

}

static void fftShift(InputOutputArray _out)
{
    Mat out = _out.getMat();

    if(out.rows == 1 && out.cols == 1)
    {
        // trivially shifted.
        return;
    }

    std::vector<Mat> planes;
    split(out, planes);

    int xMid = out.cols >> 1;
    int yMid = out.rows >> 1;

    bool is_1d = xMid == 0 || yMid == 0;

    if(is_1d)
    {
        int is_odd = (xMid > 0 && out.cols % 2 == 1) || (yMid > 0 && out.rows % 2 == 1);
        xMid = xMid + yMid;

        for(size_t i = 0; i < planes.size(); i++)
        {
            Mat tmp;
            Mat half0(planes[i], Rect(0, 0, xMid + is_odd, 1));
            Mat half1(planes[i], Rect(xMid + is_odd, 0, xMid, 1));

            half0.copyTo(tmp);
            half1.copyTo(planes[i](Rect(0, 0, xMid, 1)));
            tmp.copyTo(planes[i](Rect(xMid, 0, xMid + is_odd, 1)));
        }
    }
    else
    {
        int isXodd = out.cols % 2 == 1;
        int isYodd = out.rows % 2 == 1;
        for(size_t i = 0; i < planes.size(); i++)
        {
            // perform quadrant swaps...
            Mat q0(planes[i], Rect(0,    0,    xMid + isXodd, yMid + isYodd));
            Mat q1(planes[i], Rect(xMid + isXodd, 0,    xMid, yMid + isYodd));
            Mat q2(planes[i], Rect(0,    yMid + isYodd, xMid + isXodd, yMid));
            Mat q3(planes[i], Rect(xMid + isXodd, yMid + isYodd, xMid, yMid));

            if(!(isXodd || isYodd))
            {
                Mat tmp;
                q0.copyTo(tmp);
                q3.copyTo(q0);
                tmp.copyTo(q3);

                q1.copyTo(tmp);
                q2.copyTo(q1);
                tmp.copyTo(q2);
            }
            else
            {
                Mat tmp0, tmp1, tmp2 ,tmp3;
                q0.copyTo(tmp0);
                q1.copyTo(tmp1);
                q2.copyTo(tmp2);
                q3.copyTo(tmp3);

                tmp0.copyTo(planes[i](Rect(xMid, yMid, xMid + isXodd, yMid + isYodd)));
                tmp3.copyTo(planes[i](Rect(0, 0, xMid, yMid)));

                tmp1.copyTo(planes[i](Rect(0, yMid, xMid, yMid + isYodd)));
                tmp2.copyTo(planes[i](Rect(xMid, 0, xMid + isXodd, yMid)));
            }
        }
    }

    merge(planes, out);
}

static Point2d weightedCentroid(InputArray _src, cv::Point peakLocation, cv::Size weightBoxSize, double* response)
{
    Mat src = _src.getMat();

    int type = src.type();
    CV_Assert( type == CV_32FC1 || type == CV_64FC1 );

    int minr = peakLocation.y - (weightBoxSize.height >> 1);
    int maxr = peakLocation.y + (weightBoxSize.height >> 1);
    int minc = peakLocation.x - (weightBoxSize.width  >> 1);
    int maxc = peakLocation.x + (weightBoxSize.width  >> 1);

    Point2d centroid;
    double sumIntensity = 0.0;

    // clamp the values to min and max if needed.
    if(minr < 0)
    {
        minr = 0;
    }

    if(minc < 0)
    {
        minc = 0;
    }

    if(maxr > src.rows - 1)
    {
        maxr = src.rows - 1;
    }

    if(maxc > src.cols - 1)
    {
        maxc = src.cols - 1;
    }

    if(type == CV_32FC1)
    {
        const float* dataIn = src.ptr<float>();
        dataIn += minr*src.cols;
        for(int y = minr; y <= maxr; y++)
        {
            for(int x = minc; x <= maxc; x++)
            {
                centroid.x   += (double)x*dataIn[x];
                centroid.y   += (double)y*dataIn[x];
                sumIntensity += (double)dataIn[x];
            }

            dataIn += src.cols;
        }
    }
    else
    {
        const double* dataIn = src.ptr<double>();
        dataIn += minr*src.cols;
        for(int y = minr; y <= maxr; y++)
        {
            for(int x = minc; x <= maxc; x++)
            {
                centroid.x   += (double)x*dataIn[x];
                centroid.y   += (double)y*dataIn[x];
                sumIntensity += dataIn[x];
            }

            dataIn += src.cols;
        }
    }

    if(response)
        *response = sumIntensity;

    sumIntensity += DBL_EPSILON; // prevent div0 problems...

    centroid.x /= sumIntensity;
    centroid.y /= sumIntensity;

    return centroid;
}

}

二、修改的gpu版本

Point2d phaseCorrelate_gpu(Mat &src1, Mat &src2, InputArray &_window, double* response)
{


    //CV_INSTRUMENT_REGION();

    //Mat src1 = _src1.getMat();
    //Mat src2 = _src2.getMat();
    //cuda::GpuMat window = _window.getGpuMat();
    Mat window = _window.getMat();

    //检查
    CV_Assert(src1.type() == src2.type());
    CV_Assert(src1.type() == CV_32FC1 || src1.type() == CV_64FC1);
    CV_Assert(src1.size == src2.size);

    if (!window.empty())
    {
        CV_Assert(src1.type() == window.type());
        CV_Assert(src1.size == window.size);
        //CV_Assert(src1.cols == window.cols);
        //CV_Assert(src1.rows == window.rows);
    }

    //因为要进行离散傅立叶变换,所以为了提高效率,就要得到最佳的图像尺寸
    int M = getOptimalDFTSize(src1.rows);
    int N = getOptimalDFTSize(src1.cols);

    //准备扩充边界
    /*cuda::Gpu*/Mat padded1, padded2, paddedWin;

    if (M != src1.rows || N != src1.cols)
    {
        //这儿使用cuda的时间比不使用更慢
        copyMakeBorder(src1, padded1, 0, M - src1.rows, 0, N - src1.cols, BORDER_CONSTANT, Scalar::all(0));
        copyMakeBorder(src2, padded2, 0, M - src2.rows, 0, N - src2.cols, BORDER_CONSTANT, Scalar::all(0));

        if (!window.empty())
        {
            cuda::copyMakeBorder(window, paddedWin, 0, M - window.rows, 0, N - window.cols, BORDER_CONSTANT, Scalar::all(0));
        }
    }
    else
    {
        padded1 = src1;
        padded2 = src2;
        paddedWin = window;
    }

    // perform window multiplication if available
    //执行步骤1,两幅输入图像分别与窗函数逐点相乘
    if (!window.empty()/*paddedWin.empty()*/)
    {
        // apply window to both images before proceeding...
        cuda::multiply(paddedWin, padded1, padded1);
        cuda::multiply(paddedWin, padded2, padded2);
    }

    cuda::GpuMat gPadded1, gPadded2, gFFT1, gFFT2, gP, gPm,gC;

    gPadded1.upload(padded1);
    gPadded2.upload(padded2);

    //执行步骤2,分别对两幅图像取傅立叶变换
    cuda::dft(gPadded2, gFFT2, padded2.size(), 0);
    cuda::dft(gPadded1, gFFT1, gPadded1.size(),0);
    
    //执行步骤3
    //计算互功率谱的分子部分,即公式3中的分子,其中P为输出结果,true表示的是对FF2取共轭,所以得到的结果为:P=FFT1×FFT2*,mulSpectrums函数为通用函数
    cv::cuda::mulSpectrums(gFFT1, gFFT2, gP, 0, true);

    private::cuda::magSpectrums(gP, gPm);////计算互功率谱的分母部分
    //计算互功率谱
    private::cuda::divSpectrums(gP, gPm, gC, 0, false); // FF* / |FF*| (phase correlation equation completed here...)

    //执行步骤4,傅立叶逆变换
    cv::cuda::dft(gC, gC, cv::Size(2*(gC.cols-1),gC.rows), DFT_INVERSE| DFT_REAL_OUTPUT); // gives us the nice peak shift location...

    Mat C;
    gC.download(C);
    //平移处理
    private::fftShift(C); // shift the energy to the center of the frame.
    // locate the highest peak
    Point peakLoc;
    cuda::minMaxLoc(C, NULL, NULL, NULL, &peakLoc);

    // get the phase shift with sub-pixel accuracy, 5x5 window seems about right here...
    Point2d t;
    t = private::weightedCentroid(C, peakLoc, Size(5, 5), response);

    // max response is M*N (not exactly, might be slightly larger due to rounding errors)
    if (response)
        *response /= M * N;

    // adjust shift relative to image center...
    Point2d center((double)padded1.cols / 2.0, (double)padded1.rows / 2.0);

    return (center - t);
}

修改了两个私有的函数

namespace private
{
    namespace cuda
    {
        //计算模长矩阵
        C_G__ void cu_magSpectrums_kernel(cv::cuda::PtrStepSz<float2> cu_src, cv::cuda::PtrStepSz<float1> cu_dst)
        {
            unsigned int x = blockDim.x * blockIdx.x + threadIdx.x;
            unsigned int y = blockDim.y * blockIdx.y + threadIdx.y;

            if (x < cu_src.cols && y < cu_src.rows)
            {
                cu_dst(y, x).x = (float)std::sqrt(pow((double)cu_src(y,x).x,2) + pow((double)cu_src(y,x).y,2));
            }
        }

        //复数矩阵逐元素除法,分母已经是只有实数了
        C_G__ void cu_divSpectrums_kernel_1(cv::cuda::PtrStepSz<float2> cu_srcA, cv::cuda::PtrStepSz<float1> cu_srcB, cv::cuda::PtrStepSz<float2> cu_dst)
        {
            unsigned int x = blockDim.x * blockIdx.x + threadIdx.x;
            unsigned int y = blockDim.y * blockIdx.y + threadIdx.y;

            float eps = FLT_EPSILON; // prevent div0 problems

            if (x < cu_srcA.cols && y < cu_srcB.rows)
            {
                cu_dst(y, x).x = (float)((double)cu_srcA(y, x).x / (double)(cu_srcB(y, x).x + eps));
                cu_dst(y, x).y = (float)((double)cu_srcA(y, x).y / (double)(cu_srcB(y, x).x+eps));
            }
        }

        //复数矩阵逐元素除法,分母也是复数
        C_G__ void cu_divSpectrums_kernel_2(cv::cuda::PtrStepSz<float2> cu_srcA, cv::cuda::PtrStepSz<float2> cu_srcB, cv::cuda::PtrStepSz<float2> cu_dst, bool conjB)
        {
            unsigned int x = blockDim.x * blockIdx.x + threadIdx.x;
            unsigned int y = blockDim.y * blockIdx.y + threadIdx.y;

            float eps = FLT_EPSILON; // prevent div0 problems

            if (x < cu_srcA.cols && y < cu_srcB.rows)
            {
                double denom = (double)(std::pow(cu_srcB(y, x).x, 2) + std::pow(cu_srcB(y, x).y, 2) + eps);
                if (!conjB)
                {
                    double real = (double)(cu_srcA(y, x).x*cu_srcB(y, x).x + cu_srcA(y, x).y*cu_srcB(y, x).y);//实部乘实部,虚部乘虚部,加起来是实部
                    double imag = (double)(cu_srcA(y, x).y*cu_srcB(y, x).x - cu_srcA(y, x).x*cu_srcB(y, x).y);

                    cu_dst(y, x).x = (float)(real / denom);
                    cu_dst(y, x).y = (float)(imag/denom);
                }
                else
                {
                    double real = (double)(cu_srcA(y, x).x*cu_srcB(y, x).x - cu_srcA(y, x).y*cu_srcB(y, x).y);//实部乘实部,虚部乘虚部,加起来是实部
                    double imag = (double)(cu_srcA(y, x).y*cu_srcB(y, x).x + cu_srcA(y, x).x*cu_srcB(y, x).y);

                    cu_dst(y, x).x = (float)(real / denom);
                    cu_dst(y, x).y = (float)(imag / denom);
                }
            }

        }


        //计算模长
        void magSpectrums(cv::cuda::GpuMat &_src, cv::cuda::GpuMat &_dst)
        {
            //检查
            int nChannels = _src.channels();
            CV_Assert(nChannels == 2);
            CV_Assert(_src.cols != 0 && _src.rows != 0);

            //设置
            dim3 block(32, 32);//块大小
            dim3 grid((_src.cols + block.x - 1) / block.x, (_src.rows + block.y - 1) / block.y);//块数量

            //_dst = cv::cuda::GpuMat(_src.size(), CV_32FC(nChannels));
            _dst = cv::cuda::GpuMat(_src.size(), CV_32FC1);

            cu_magSpectrums_kernel << <grid, block >> > (_src, _dst);

            return;
        }

        //复数矩阵逐元素除法
        void divSpectrums(cv::cuda::GpuMat &_srcA, cv::cuda::GpuMat &_srcB, cv::cuda::GpuMat &_dst, int flags, bool conjB)
        {
            //检查
            int nChannelsA = _srcA.channels();
            int nChannelsB = _srcB.channels();
            CV_Assert(_srcA.size() != cv::Size(0, 0));
            CV_Assert(nChannelsA == 2);
            CV_Assert(nChannelsB == 1 || nChannelsB == 2);
            CV_Assert(_srcA.cols != 0 && _srcA.rows != 0);

            //设置
            dim3 block(32, 32);//块大小
            dim3 grid((_srcA.cols + block.x - 1) / block.x, (_srcA.rows + block.y - 1) / block.y);//块数量

            _dst = cv::cuda::GpuMat(_srcA.size(), CV_32FC(nChannelsA));
            switch (nChannelsB)
            {
            case 1:
                cu_divSpectrums_kernel_1 << <grid, block >> > (_srcA, _srcB, _dst);
                break;
            case 2:
                cu_divSpectrums_kernel_2 << <grid, block >> > (_srcA, _srcB, _dst, conjB);
                break;
            default:
                break;
            }

            return;
        }
    }
}

相关文章

  • gpu版本相位相关

    零、序言 opencv提供了有相位相关的计算代码,但是只有cpu的版本,速度虽然不错,但是也不满足需求,于是想做g...

  • Ubuntu+Anaconda+Tensorflow-gpu安装

    查看cuda版本(与tensorflow版本密切相关):nvcc -V查看该版本可以安装的tf-gpu版本:htt...

  • 查看版本号命令

    conda版本 GPU版本 CUDA版本 pytorch版本 验证GPU版pytorch是否可用 torchvis...

  • CUDA版本与GPU驱动版本问题

    GPU的驱动版本决定了支持CUDA的最高版本,所以安装tensorflow gpu(或者pytorch gpu)版...

  • TensorFlow 安装GPU版本

    TensorFlow 有两个版本:CPU 版本和 GPU 版本。GPU 版本需要 CUDA 和 cuDNN 的支持...

  • LightGBM的GPU版本安装

    安装GPU版本 指定device=gpu后可以使用GPU 安装CUDA版本 指定device=cuda报错,提示需...

  • TensorFlow入门(一)安装与基本框架

    安装 TensorFlow分为CPU和GPU两个版本,如果系统没有NVIDIA® GPU,就安装CPU版本,GPU...

  • Tensorflow+CUDA+cudnn安装

    安装前准备 TensorFlow 有两个版本:CPU版本和GPU版本。GPU 版本需要CUDA和cuDNN的支持,...

  • GPU相关

    gpustat 以一种简洁的方式,动态实时监控GPU的使用情况 or

  • Pytorch小技巧集

    查看torch版本,系统版本 查看torch是否支持cuda(GPU),GPU数量,显示名称 device和wor...

网友评论

      本文标题:gpu版本相位相关

      本文链接:https://www.haomeiwen.com/subject/adfgmltx.html