美文网首页
iOS内存管理底层原理

iOS内存管理底层原理

作者: 希尔罗斯沃德_董 | 来源:发表于2021-08-27 23:29 被阅读0次

    内存布局

    了解程序内存布局请点击程序的内存布局以及栈、堆原理

    内存管理方案

    在学习内存管理之前先思考一下这几个问题:

    1、对象的引用计数存放在什么地方?怎么读写的?
    2、对象释放的时候怎么处理弱引用表、关联对象的?弱引用为什么可以在对象时自动置为nil?
    3、什么是SideTable?它跟引用计数表和弱引用表是什么关系?
    4、自动释放池是如何管理内存的?什么时候创建?什么时候释放对象?

    MRC

    MRC(Manual Reference Counting)翻译出来就是手动引用计数。在Xcode4之前,只能通过MRC机制管理内存,MRC要求开发人员手动管理内存,维护OC对象的引用计数。也就是说,在需要方手动调用retain、release等内存管理相关操作。

    ARC

    ARC(Automatic Reference Counting),翻译出来就是自动引用计数。这是相对于MRC的改进,本身内存管理还是通过引用计数机制的,只不过是不需要开发人员手动维护,程序在编译时期会在适当的地方自动插入相关的retain、release等代码,达到自动管理引用计数的目的。

    Tagged Pointer小对象

    Tagged Pointer计数是将一些小对象诸如NSString、NSNumber、NSDate等类型转成Tagged Pointer对象,它们的值直接存储在对象指针中。不需要开辟堆内存,也就是不需要malloc和free,也不需要引用计数retain、release等操作(点击了解更多关于Tagged Pointer小对象的内容)。

    引用计数机制的底层原理

    不管是MRC还是ARC,都是通过引用计数来管理内存的。那么什么是引用计数?它是如何通过引用计数来管理内存的呢?引用计数是计算机编程语言中的一种内存管理技术,是指将对象的被引用次数保存起来,当被引用次数变为零时就将其释放的过程。在iOS中引用又分为强引用(strong)和弱引用(weak),强引用是引用计数会增加,弱引用则不会。iOS中常见的引用计数相关的操作有:

    • alloc对象创建时(老版本源码的alloc是不会初始化引用计数的,这里版本是objc4-818.2);
      retain(包括strong修饰的属性),引用计数加1;
      release,引用计数减1;
      autorelease 自动释放,对象指针会被添加到释放池中,在自动释放池drain时释放;
      retainCount,获取引用计数个数。

    接下来通过源码对各个操作进行解析。

    alloc时初始化引用计数

    alloc是对象创建时会调用initIsa方法初始化isa(点击了解对象创建过程),初始化isa的时候会初始化引用计数为1(点击了解更多关于isa的信息):

    inline void 
    objc_object::initIsa(Class cls, bool nonpointer, UNUSED_WITHOUT_INDEXED_ISA_AND_DTOR_BIT bool hasCxxDtor)
    { 
        ASSERT(!isTaggedPointer()); 
        
        const char *mangledName = cls->mangledName();
        if (strcmp("MyObject", mangledName) == 0) {
            if(!cls->isMetaClass()){//避免元类的影响
                printf("我来了 MyObject");//定位要调试的类
            }
        }
        isa_t newisa(0);
    
        if (!nonpointer) {
            newisa.setClass(cls, this);
        } else {
            ASSERT(!DisableNonpointerIsa);
            ASSERT(!cls->instancesRequireRawIsa());
    
    
    #if SUPPORT_INDEXED_ISA
            ASSERT(cls->classArrayIndex() > 0);
            newisa.bits = ISA_INDEX_MAGIC_VALUE;
            // isa.magic is part of ISA_MAGIC_VALUE
            // isa.nonpointer is part of ISA_MAGIC_VALUE
            newisa.has_cxx_dtor = hasCxxDtor;
            newisa.indexcls = (uintptr_t)cls->classArrayIndex();
    #else
            newisa.bits = ISA_MAGIC_VALUE;
            // isa.magic is part of ISA_MAGIC_VALUE
            // isa.nonpointer is part of ISA_MAGIC_VALUE
    #   if ISA_HAS_CXX_DTOR_BIT
            newisa.has_cxx_dtor = hasCxxDtor;
    #   endif
            newisa.setClass(cls, this);
    #endif
            newisa.extra_rc = 1;
        }
    
        // This write must be performed in a single store in some cases
        // (for example when realizing a class because other threads
        // may simultaneously try to use the class).
        // fixme use atomics here to guarantee single-store and to
        // guarantee memory order w.r.t. the class index table
        // ...but not too atomic because we don't want to hurt instantiation
        isa = newisa;
    }
    

    初始化引用计数:

    newisa.extra_rc = 1;
    
    retain底层源码解析

    对象的retain操作最终是通过方法rootRetain来实现的。rootRetain主要做了如下几件事情:
    1、读取出isa指针信息(点击了解更多关于isa的信息)。

    oldisa = LoadExclusive(&isa.bits);
    

    2、判断对象是否有自己的默认实现的retain方法。

     if (variant == RRVariant::FastOrMsgSend) {
            // These checks are only meaningful for objc_retain()
            // They are here so that we avoid a re-load of the isa.
            if (slowpath(oldisa.getDecodedClass(false)->hasCustomRR())) {
                ClearExclusive(&isa.bits);
                if (oldisa.getDecodedClass(false)->canCallSwiftRR()) {
                    return swiftRetain.load(memory_order_relaxed)((id)this);
                }
                return ((id(*)(objc_object *, SEL))objc_msgSend)(this, @selector(retain));
            }
        }
    

    如果有的话就走自己方法。
    3、判断是否是nonpointer对象,如果是nonpointer对象的话不需要引用计数管理,比如类对象等,直接return。点击了解更多关于nonpointer的信息

    if (slowpath(!oldisa.nonpointer)) {
            // a Class is a Class forever, so we can perform this check once
            // outside of the CAS loop
            if (oldisa.getDecodedClass(false)->isMetaClass()) {
                ClearExclusive(&isa.bits);
                return (id)this;
            }
        }
    

    4、判断对象是否正在释放,如果是正在释放就没必要retain了

     if (slowpath(newisa.isDeallocating())) {
                ClearExclusive(&isa.bits);
                if (sideTableLocked) {
                    ASSERT(variant == RRVariant::Full);
                    sidetable_unlock();
                }
                if (slowpath(tryRetain)) {
                    return nil;
                } else {
                    return (id)this;
                }
            }
    

    5、对引用技术加1,因为nonpointer对象的引用计数是存在isa指针里的有限为(指针长度64位,引用计数extra_rc总共占8位,RC_ONE (1ULL<<45),从地45位开始写 )(点击了解isa更多信息),所以有可能出现溢出情况,如果溢出就读取出当前引用计数的一半(RC_HALF)存储到SideTable(后面有分析)。

    uintptr_t carry;
            newisa.bits = addc(newisa.bits, RC_ONE, 0, &carry);  // extra_rc++
    
            if (slowpath(carry)) {
                // newisa.extra_rc++ overflowed
                if (variant != RRVariant::Full) {
                    ClearExclusive(&isa.bits);
                    return rootRetain_overflow(tryRetain);
                }
                // Leave half of the retain counts inline and 
                // prepare to copy the other half to the side table.
                if (!tryRetain && !sideTableLocked) sidetable_lock();
                sideTableLocked = true;
                transcribeToSideTable = true;
                newisa.extra_rc = RC_HALF;//更新isa中的extra_rc
                newisa.has_sidetable_rc = true;
            }
    

    如果溢出,则RC_HALF存储到 SideTable:

     if (variant == RRVariant::Full) {
            if (slowpath(transcribeToSideTable)) {
                // Copy the other half of the retain counts to the side table.
                sidetable_addExtraRC_nolock(RC_HALF);
            }
    
            if (slowpath(!tryRetain && sideTableLocked)) sidetable_unlock();
        }
    

    增加完引用计数之后就返回了。

    release源码解析

    release最终是通过方法objc_object::rootRelease来实现引用计数操作的。rootRelease主要做了以下几件事情:
    1、读取isa指针oldisa:

    oldisa = LoadExclusive(&isa.bits);
    

    2、判断是否有自定义的release方法,如果有走自己的方法,没有就往下:

    if (variant == RRVariant::FastOrMsgSend) {
            // These checks are only meaningful for objc_release()
            // They are here so that we avoid a re-load of the isa.
            if (slowpath(oldisa.getDecodedClass(false)->hasCustomRR())) {
                ClearExclusive(&isa.bits);
                if (oldisa.getDecodedClass(false)->canCallSwiftRR()) {
                    swiftRelease.load(memory_order_relaxed)((id)this);
                    return true;
                }
                ((void(*)(objc_object *, SEL))objc_msgSend)(this, @selector(release));
                return true;
            }
        }
    

    3、判断是否是nonpointer,如果不是就返回,不需要release:

    if (slowpath(!oldisa.nonpointer)) {
            // a Class is a Class forever, so we can perform this check once
            // outside of the CAS loop
            if (oldisa.getDecodedClass(false)->isMetaClass()) {
                ClearExclusive(&isa.bits);
                return false;
            }
        }
    

    4、判断对象是否正在释放,如果是正在释放就退出循环跳到deallocate:

           if (slowpath(newisa.isDeallocating())) {
                ClearExclusive(&isa.bits);
                if (sideTableLocked) {
                    ASSERT(variant == RRVariant::Full);
                    sidetable_unlock();
                }
                return false;
            }
    

    如果是正在释放则直接跳到deallocate:

     if (slowpath(newisa.isDeallocating()))
            goto deallocate;
    

    5、引用计数extra_rc--,如果isa中的引用计数已经减为0了,则跳转到underflow:

    uintptr_t carry;
            newisa.bits = subc(newisa.bits, RC_ONE, 0, &carry);  // extra_rc--
            if (slowpath(carry)) {
                // don't ClearExclusive()
                goto underflow;
            }
    
     underflow:
        // newisa.extra_rc-- underflowed: borrow from side table or deallocate
    
        // abandon newisa to undo the decrement
        newisa = oldisa;
    
        if (slowpath(newisa.has_sidetable_rc)) {
            if (variant != RRVariant::Full) {
                ClearExclusive(&isa.bits);
                return rootRelease_underflow(performDealloc);
            }
    
            // Transfer retain count from side table to inline storage.
    
            if (!sideTableLocked) {
                ClearExclusive(&isa.bits);
                sidetable_lock();
                sideTableLocked = true;
                // Need to start over to avoid a race against 
                // the nonpointer -> raw pointer transition.
                oldisa = LoadExclusive(&isa.bits);
                goto retry;
            }
    
            // Try to remove some retain counts from the side table.        
            auto borrow = sidetable_subExtraRC_nolock(RC_HALF);
    
            bool emptySideTable = borrow.remaining == 0; // we'll clear the side table if no refcounts remain there
    
            if (borrow.borrowed > 0) {
                // Side table retain count decreased.
                // Try to add them to the inline count.
                bool didTransitionToDeallocating = false;
                newisa.extra_rc = borrow.borrowed - 1;  // redo the original decrement too
                newisa.has_sidetable_rc = !emptySideTable;
    
                bool stored = StoreReleaseExclusive(&isa.bits, &oldisa.bits, newisa.bits);
    
                if (!stored && oldisa.nonpointer) {
                    // Inline update failed. 
                    // Try it again right now. This prevents livelock on LL/SC 
                    // architectures where the side table access itself may have 
                    // dropped the reservation.
                    uintptr_t overflow;
                    newisa.bits =
                        addc(oldisa.bits, RC_ONE * (borrow.borrowed-1), 0, &overflow);
                    newisa.has_sidetable_rc = !emptySideTable;
                    if (!overflow) {
                        stored = StoreReleaseExclusive(&isa.bits, &oldisa.bits, newisa.bits);
                        if (stored) {
                            didTransitionToDeallocating = newisa.isDeallocating();
                        }
                    }
                }
    
                if (!stored) {
                    // Inline update failed.
                    // Put the retains back in the side table.
                    ClearExclusive(&isa.bits);
                    sidetable_addExtraRC_nolock(borrow.borrowed);
                    oldisa = LoadExclusive(&isa.bits);
                    goto retry;
                }
    
                // Decrement successful after borrowing from side table.
                if (emptySideTable)
                    sidetable_clearExtraRC_nolock();
    
                if (!didTransitionToDeallocating) {
                    if (slowpath(sideTableLocked)) sidetable_unlock();
                    return false;
                }
            }
            else {
                // Side table is empty after all. Fall-through to the dealloc path.
            }
        }
    

    在underflow流程中判断之前是否有用于存储引用计数的SideTable,如果有,从里面读取引用计数,然后减1,然后重新把引用计数同步更新到isa指针(方便下次读取),清除SideTable(清理内存)。

    6、如果引用计数为0就会调用dealloc

    deallocate:
        // Really deallocate.
    
        ASSERT(newisa.isDeallocating());
        ASSERT(isa.isDeallocating());
    
        if (slowpath(sideTableLocked)) sidetable_unlock();
    
        __c11_atomic_thread_fence(__ATOMIC_ACQUIRE);
    
        if (performDealloc) {
            ((void(*)(objc_object *, SEL))objc_msgSend)(this, @selector(dealloc));
        }
    
    dealloc源码解析

    dealloc底层通过objc_object::rootDealloc()方法实现,其源码:

    inline void
    objc_object::rootDealloc()
    {
        if (isTaggedPointer()) return;  // fixme necessary?
    
        if (fastpath(isa.nonpointer                     &&
                     !isa.weakly_referenced             &&
                     !isa.has_assoc                     &&
    #if ISA_HAS_CXX_DTOR_BIT
                     !isa.has_cxx_dtor                  &&
    #else
                     !isa.getClass(false)->hasCxxDtor() &&
    #endif
                     !isa.has_sidetable_rc))
        {
            assert(!sidetable_present());
            free(this);
        } 
        else {
            object_dispose((id)this);
        }
    }
    

    1、这里我们看到它会判断当前对象是否有弱引用(weakly_referenced)、关联对象(has_assoc)、C++析构函数(has_cxx_dtor)、Sidetable(has_sidetable_rc),如果没有直接释放free(this);如果有,则调用object_dispose方法。object_dispose的流程如下:

    object_dispose -> objc_destructInstance -> clearDeallocating -> clearDeallocating_slow- > free(obj);

    2、objc_destructInstances首先判断有没有C++析构函数和关联对象,有C++析构函数就调用,有关联对象remove:

    void *objc_destructInstance(id obj) 
    {
        if (obj) {
            // Read all of the flags at once for performance.
            bool cxx = obj->hasCxxDtor();
            bool assoc = obj->hasAssociatedObjects();
    
            // This order is important.
            if (cxx) object_cxxDestruct(obj);
            if (assoc) _object_remove_assocations(obj, /*deallocating*/true);
            obj->clearDeallocating();
        }
    
        return obj;
    }
    

    clearDeallocating方法中会判断有没有弱引用或者SideTable中是否有引用计数has_sidetable_rc,如果有则调用clearDeallocating_slow处理(因为如引用表和部分引用计数表是存储于SideTable中,所以它们被放在一个方法里处理):

    inline void 
    objc_object::clearDeallocating()
    {
        if (slowpath(!isa.nonpointer)) {
            // Slow path for raw pointer isa.
            sidetable_clearDeallocating();
        }
        else if (slowpath(isa.weakly_referenced  ||  isa.has_sidetable_rc)) {
            // Slow path for non-pointer isa with weak refs and/or side table data.
            clearDeallocating_slow();
        }
    
        assert(!sidetable_present());
    }
    NEVER_INLINE void
    objc_object::clearDeallocating_slow()
    {
        ASSERT(isa.nonpointer  &&  (isa.weakly_referenced || isa.has_sidetable_rc));
    
        SideTable& table = SideTables()[this];
        table.lock();
        if (isa.weakly_referenced) {
            weak_clear_no_lock(&table.weak_table, (id)this);
        }
        if (isa.has_sidetable_rc) {
            table.refcnts.erase(this);
        }
        table.unlock();
    }
    
    retainCount源码解析

    retainCount就是读取isa和Sidetable(如果有)中的引用计数的和:

    inline uintptr_t 
    objc_object::rootRetainCount()
    {
        if (isTaggedPointer()) return (uintptr_t)this;
    
        sidetable_lock();
        isa_t bits = __c11_atomic_load((_Atomic uintptr_t *)&isa.bits, __ATOMIC_RELAXED);
        if (bits.nonpointer) {
            uintptr_t rc = bits.extra_rc;
            if (bits.has_sidetable_rc) {
                rc += sidetable_getExtraRC_nolock();
            }
            sidetable_unlock();
            return rc;
        }
        sidetable_unlock();
        return sidetable_retainCount();
    }
    
    SideTable表的作用

    SideTable是个哈希表,适用于存储引用计数和弱引用表的,它的表结构如下:


    SideTable.jpg

    这里有个问题:引用计数为什么要使用SideTable? 因为引用计数开始是存储在isa指针中的,但是由于isa指针位数有限(64位),而分配给引用技术8位,如果引用计数溢出,那么就需要一个引用计数表来存储多余的部分,SideTable是个哈希表,方便增删改查。
    那么这里又有一个问题:既然isa指针位数有限,为什么不直接使用SideTable呢?主要是为了节省内存和提高读写效率。首先isa存储指针的初衷就是为了节省内存、提高读写效率的,而且对于大部分对象来说8位(2^8个)用于存储引用计数也已经足够,只有少部分对象引用计数可能会超过,而如果每个对象都使用SideTable表的话会影响效率,还浪费内存。

    弱引用

    弱引用不会增加对象的引用计数,但是它会有一个表来记录引用变量,用于当对象释放的时候把这些变量指针置为nil,防止野指针。有前面可知弱引用表是存储在SideTable中的(weak_table_t weak_table),下面是weak_table_t的数据结构:

    /**
     * The global weak references table. Stores object ids as keys,
     * and weak_entry_t structs as their values.
     */
    struct weak_table_t {
        weak_entry_t *weak_entries;
        size_t    num_entries;
        uintptr_t mask;
        uintptr_t max_hash_displacement;
    };
    
    struct weak_entry_t {
        DisguisedPtr<objc_object> referent;
        union {
            struct {
                weak_referrer_t *referrers;
                uintptr_t        out_of_line_ness : 2;
                uintptr_t        num_refs : PTR_MINUS_2;
                uintptr_t        mask;
                uintptr_t        max_hash_displacement;
            };
            struct {
                // out_of_line_ness field is low bits of inline_referrers[1]
                weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
            };
        };
    
        bool out_of_line() {
            return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
        }
    
        weak_entry_t& operator=(const weak_entry_t& other) {
            memcpy(this, &other, sizeof(other));
            return *this;
        }
    
        weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
            : referent(newReferent)
        {
            inline_referrers[0] = newReferrer;
            for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
                inline_referrers[i] = nil;
            }
        }
    };
    

    在对象释放的时候会把关联的弱引用表中的变量指针一个个删除,并把指针指向nil:

    /** 
     * Called by dealloc; nils out all weak pointers that point to the 
     * provided object so that they can no longer be used.
     * 
     * @param weak_table 
     * @param referent The object being deallocated. 
     */
    void 
    weak_clear_no_lock(weak_table_t *weak_table, id referent_id) 
    {
        objc_object *referent = (objc_object *)referent_id;
    
        weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
        if (entry == nil) {
            /// XXX shouldn't happen, but does with mismatched CF/objc
            //printf("XXX no entry for clear deallocating %p\n", referent);
            return;
        }
    
        // zero out references
        weak_referrer_t *referrers;
        size_t count;
        
        if (entry->out_of_line()) {
            referrers = entry->referrers;
            count = TABLE_SIZE(entry);
        } 
        else {
            referrers = entry->inline_referrers;
            count = WEAK_INLINE_COUNT;
        }
        
        for (size_t i = 0; i < count; ++i) {
            objc_object **referrer = referrers[i];
            if (referrer) {
                if (*referrer == referent) {
                    *referrer = nil;
                }
                else if (*referrer) {
                    _objc_inform("__weak variable at %p holds %p instead of %p. "
                                 "This is probably incorrect use of "
                                 "objc_storeWeak() and objc_loadWeak(). "
                                 "Break on objc_weak_error to debug.\n", 
                                 referrer, (void*)*referrer, (void*)referent);
                    objc_weak_error();
                }
            }
        }
        
        weak_entry_remove(weak_table, entry);
    }
    

    自动释放池

    关于自动释放池直接参考iOS自动释放池的底层原理

    相关文章

      网友评论

          本文标题:iOS内存管理底层原理

          本文链接:https://www.haomeiwen.com/subject/adluiltx.html