思路
正n
多边形应该是是建立在圆上的,
θ
随着 n 而变化,有θ=2π/n
关系,
据初始顶点坐标即可依次求出所有顶点坐标。
Pycode
import pylab as pl
%matplotlib inline
def polygon(n=3, startX=100, startY=0, r=100):
"""
Ploygon for docstring.
Get ploygon x and y postions.
---------------------
Paramter
n: int, polygon's sides, default 3.
startX: int, fitst x postion, default 100.
startY: int, fitst y postion, default 0.
startX: int, fitst x postion, default 100.
r: int, radius, default 100.
Returns
x, y: list, x and y contain all postions.
"""
theta = 2 * pl.pi / n
x = [startX - r * pl.sin(theta * i) if i >
0 else startX for i in range(n + 1)]
y = [startY + r - r * pl.cos(theta * i)
if i > 0 else startY for i in range(n + 1)]
return x, y
x, y = polygon(3)
pl.plot(x, y)
ax = pl.gca()
ax.set_aspect(1) # Make xticks' length qeual to yticks'length.
三角形的说
SourceCode
import pylab as pl
def polygon(n=3, startX=100, startY=0, r=100):
"""
Ploygon for docstring.
Get ploygon x and y postions.
---------------------
Paramter
n: int, polygon's sides, default 3.
startX: int, fitst x postion, default 100.
startY: int, fitst y postion, default 0.
startX: int, fitst x postion, default 100.
r: int, radius, default 100.
Returns
x, y: list, x and y contain all postions.
"""
theta = 2 * pl.pi / n
x = [startX - r * pl.sin(theta * i) if i >
0 else startX for i in range(n + 1)]
y = [startY + r - r * pl.cos(theta * i)
if i > 0 else startY for i in range(n + 1)]
return x, y
x, y = polygon(3)
pl.plot(x, y)
ax = pl.gca()
ax.set_aspect(1) # Make xticks' length qeual to yticks'length.
pl.show()
写在后面的
啊~在用程序画图是建立在坐标上的,没有坐标,那就算了喽
最后,就酱
填坑,补完 https://onlyyouknow.me/2018/11/04/Regular-polygon-algorithm.html
网友评论