美文网首页
不同亚型的皮质基底节综合症影响脑网络效率

不同亚型的皮质基底节综合症影响脑网络效率

作者: siyingkeji | 来源:发表于2018-07-13 14:18 被阅读0次

不同亚型的皮质基底节综合症影响脑网络效率

来自宾夕法尼亚大学的John D. Medaglia等人在Neurology期刊上发文,探讨了两种病源(AD亚型和非AD亚型)的皮质基底节综合症患者的脑网络差异。他们基于纤维追踪等技术构建了脑网络,并使用机器学习方法(SVM)对两种亚型的脑网络进行分类,最终发现利用“局部效率”这一脑网络特征可以最好地区分两种亚型。

1.简介

皮质基底节综合症(corticobasal syndrome, CBS)的两种致病原因是:(1)Tau蛋白病变;(2)伴随Beta样蛋白沉积的阿尔茨海默症(AD)。它们分别对应CBS的非AD亚型和AD亚型。最近的临床研究显示,白质和灰质相关的测量手段可以帮助区分CBS的两种亚型。其中,AD亚型涉及更多灰质病变,非AD亚型则涉及更多的白质病变。虽然这些研究能带来一些启示,但它们没有考虑个体患者的分类,也没有利用到患者脑网络的一些特性。

复杂网络方法近年来愈发受到神经影像学的青睐。已有研究证实,位于额颞顶系统的脑网络节点在认知和运动功能中扮演了重要角色,这些节点的破坏可以导致异常临床症状。但是,由于病理学的不同而表现出的脑网络特性差异如何与临床症状联系起来,仍不十分明朗。为了填补这一空缺,作者基于CBS患者的多模态影像数据,对该问题进行探讨。

2.方法

2.1脑网络的构建

作者共募集了40名CBS病人和40名健康被试。病人组通过验尸、遗传筛查、CSF分析等手段标记为两个亚型:CBS-AD、CBS-nonAD。健康组标记为HC。所有的被试都进行了T1像和DTI像的扫描。

随后依OASIS标签(OASIS labels)将每个被试的大脑划分为119个感兴趣区域(ROI)。基于T1像计算每个ROI的灰质密度,基于DTI像在任意两个ROI之间进行确定性纤维追踪。119个ROI即为脑网络的节点,脑网络连边则定义为两个ROI间的纤维束数量。作者主要关注如下几个脑网络指标:(1)加权度;(2)校正后的加权度;(3)局部聚类系数;(4)特征向量中心度;(5)局部效率。

2.2机器学习分类

作者使用了支持向量机(SVM)作为分类算法。SVM是一种高效的二分类算法,因此很适用于对两种亚型的分类。分类时主要选用三类特征:灰质密度、白质纤维束数量、脑网络指标。为避免线性方法的局限,研究使用了核方法生成非线性分类器。训练时采用有监督学习,即利用了给患者打上的亚型标签,随后使用留一验证检测分类效果。

除了训练单一分类器,作者还使用投票机制组合多个分类器,以保证结果的稳定性。比如,如果基于不同特征的多个分类器都认为某个病患属于AD亚型,那么就预测该病患为AD亚型。

作者得到的主要结果为:

(1)灰质密度可以作为CBS的生物标记。作者对病人组(不区分两种亚型)和健康组的灰度密度值进行组间T检验,发现相对于健康组,病人组119个ROI中的62个ROI的灰度密度值显著降低。并且这些ROI广泛分布在双侧额、颞、顶页皮层,包括了主要的运动皮质和双侧脑岛。随后的机器学习分类也主要针对这62个显著的ROI进行。同样地,作者也对两种CBS亚型患者的灰度密度值进行了比较。

(2)白质纤维束数量差异可作为CBS的生物标记。作者同样进行了两组对比:健康组和病人组之间的纤维束数量对比;AD亚型和非AD亚型间的纤维束数量对比。统计时使用了Bonferroni多重比较校正(α<0.05, p = 3.5*10^-6)。结果显示,相对于正常组,病人组有9对ROI间的纤维束数量显著降低,且主要分布在右侧额、颞区。两种亚型间的纤维束数量则无显著差异。

(3)基于机器学习方法,脑网络指标可以作为区分CBS亚型的生物标记。作者发现,使用“局部效率”作为特征时,分类器达到最大性能:可提供峰值85%的敏感度和峰值84%的特异性。其中,左中颞回、右颞顶枕皮层以及双侧脑岛对分类性能的贡献最大。此外,使用“灰质密度”等单变量特征时的分类效果不甚理想,使用“全局效率”作为特征的分类器同样性能不强,基于投票机制的级联分类器则提供了与基于“局部效率”的分类器相似的性能。很有趣的是,作者对CBS的AD亚型作了进一步区分,发现基于“局部效率”的分类器可以稳定地区分具有轻度认知障碍的AD亚型和其他AD亚型,分类准确率达到100%。

作者认为,他们的结果证实了,基于白质纤维追踪的脑网络分类方法可以很好地区分两种CBS亚型。以往的研究证实了白质的各向异性值(FA)可以区分CBS亚型,作者表示,他们的成果更进一步,不仅可以区分CBS亚型,还可以区分轻度认知损伤的CBS-AD患者和其他CBS-AD患者。但同时,作者也指出,他们的研究还存在一些不足:(1)他们只考察了一部分脑网络指标,并没有对所有脑网络指标进行测试;(2)他们使用的是确定性纤维追踪,使用概率性纤维追踪或许能发现更多结果;(3)他们使用的DTI扫描分辨率还相对较低,高分辨率DTI数据或许能提高分类精度;(4)CBS只是4种皮质基底节退化临床类型中的一种,未来的研究仍任重道远。

参考文章:Medaglia J D, Huang W, Segarra S, et al. Brain network efficiency is influenced by the pathologic source of corticobasal syndrome[J]. Neurology, 2017, 89(13): 1373-1381.

微信搜索“思影科技”公众号,第一时间获取脑影像资讯

相关文章

  • 不同亚型的皮质基底节综合症影响脑网络效率

    不同亚型的皮质基底节综合症影响脑网络效率 来自宾夕法尼亚大学的John D. Medaglia等人在Neurolo...

  • 基底节与基底节区是一回事吗?

    丁香园里有同学问:“基底节区属于脑的那个部分?脑,分为大脑、小脑、脑干、间脑,那么基底节区是属于间脑吗?还没有在哪...

  • 爬虫脑,哺乳脑,皮质脑

    自网络 大脑第一阶段的演化,发生在2.5亿年前,我们称其为爬虫脑或脑干。 爬虫脑在2.5亿年前便停止进化,因此人体...

  • 2020-11-07某些神经退行性疾病可以引起脑萎缩

    某些神经退行性疾病可以引起脑萎缩: 这些疾病有阿尔茨海默病、额颞叶痴呆、路易体痴呆、亨廷顿氏病、皮质基底节变性、多...

  • 皮质-皮质网络的多尺度交流

    大脑网络中的信号在多个拓扑尺度上展开。区域可以通过局部回路交换信息,包括直接邻居和具有相似功能的区域,或者通过全局...

  • 2019-04-11

    我们的视听味触都是直接输入到皮质脑中,皮质脑具有学习的能力,不断成长不断更新,不断进步。而爬虫脑和哺乳脑,则在很小...

  • 好益测:肺癌患者术后需要注意哪些问题?

    肺癌有很多亚型,不同亚型患者的治疗方式不同。 根据显微镜观察,肺癌可以分为非小细胞肺癌和小细胞肺癌两大类,非小细胞...

  • 鞋——认识不同皮质

  • 怎样帮助孩子戒除游戏成瘾

    家长朋友们您们好,我是王利明,欢迎来到家庭教育空间。 前两期节目中我们谈到沉醉在网络游戏中的人,脑内的脑导皮质区...

  • 冥想

    在《自控力》一书中,提出前额皮质影响人的自控能力,前额皮质可以培养的。通过冥想,前额皮质的大脑灰质就会增多,自控能...

网友评论

      本文标题:不同亚型的皮质基底节综合症影响脑网络效率

      本文链接:https://www.haomeiwen.com/subject/amerpftx.html