美文网首页TensorFlow我爱编程
「TensorFlow 1.0」 Tensorboard

「TensorFlow 1.0」 Tensorboard

作者: _Randolph_ | 来源:发表于2017-02-28 13:56 被阅读1492次

    TensorFlow Tensorboard

    本文主要介绍 TensorFlow 的 Tensorboard 模块。

    Tensorboard 可以看做是我们构建的 Graph 的可视化工具,对于我们初学者理解网络架构、每层网络的细节都是很有帮助的。由于前几天刚接触 TensorFlow,所以在尝试学习 Tensorboard 的过程中,遇到了一些问题。在此基础上,参考了 TensorFlow 官方的 Tensorboard Tutorials 以及网上的一些文章。由于前不久 TensorFlow 1.0 刚发布,网上的一些学习资源或者是 tensorboard 代码在新的版本中并不适用,所以自己改写并实现了官方网站上提及的三个实例的 Tensorboard 版本:

    1. 最基础简单的「linear model」
    2. 基于 MNIST 手写体数据集的 「softmax regression」模型
    3. 基于 MNIST 手写体数据集的「CNN」模型

    文章不会详细介绍 TensorFlow 以及 Tensorboard 的知识,主要是模型的代码以及部分模型实验截图。

    注意:文章前提默认读者们知晓 TensorFlow,知晓 Tensorboard,以及 TensorFlow 的一些主要概念「Variables」、「placeholder」。还有,默认你已经将需要用到的 MNIST 数据集下载到了你代码当前所在文件夹。

    Environment

    OS: macOS Sierra 10.12.x

    Python Version: 3.4.x

    TensorFlow: 1.0

    Tensorboard

    Tensorboard有几大模块:

    • SCALARS:记录单一变量的,使用 tf.summary.scalar() 收集构建。
    • IMAGES:收集的图片数据,当我们使用的数据为图片时(选用)。
    • AUDIO:收集的音频数据,当我们使用数据为音频时(选用)。
    • GRAPHS:构件图,效果图类似流程图一样,我们可以看到数据的流向,使用tf.name_scope()收集构建。
    • DISTRIBUTIONS:用于查看变量的分布值,比如 W(Weights)变化的过程中,主要是在 0.5 附近徘徊。
    • HISTOGRAMS:用于记录变量的历史值(比如 weights 值,平均值等),并使用折线图的方式展现,使用tf.summary.histogram()进行收集构建。

    Examples

    • 最简单的线性回归模型(tensorboard 绘图)
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    def add_layer(layoutname, inputs, in_size, out_size, act = None):
        with tf.name_scope(layoutname):
            with tf.name_scope('weights'):
                weights = tf.Variable(tf.random_normal([in_size, out_size]), name = 'weights')
                w_hist = tf.summary.histogram('weights', weights)
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name = 'biases')
                b_hist = tf.summary.histogram('biases', biases)
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(tf.matmul(inputs, weights), biases)
    
            if act is None:
                outputs = Wx_plus_b
            else :
                outputs = act(Wx_plus_b)
            return outputs
    
    x_data = np.linspace(-1, 1, 300)[:,np.newaxis]
    noise = np.random.normal(0,0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise
    
    with tf.name_scope('Input'):
        xs = tf.placeholder(tf.float32, [None, 1], name = "input_x")
        ys = tf.placeholder(tf.float32, [None, 1], name = "target_y")
    
    
    l1 = add_layer("first_layer", xs, 1, 10, act = tf.nn.relu)
    l1_hist = tf.summary.histogram('l1', l1)
    
    y = add_layer("second_layout", l1, 10, 1, act = None)
    y_hist = tf.summary.histogram('y', y)
    
    with tf.name_scope('loss'): 
        loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - y), 
                                reduction_indices = [1]))
        tf.summary.histogram('loss ', loss)
        tf.summary.scalar('loss', loss)
    
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    init = tf.global_variables_initializer()
    merged = tf.summary.merge_all()
    
    with tf.Session() as sess:
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        ax.scatter(x_data, y_data)
        plt.ion()
        plt.show()
        
        writer = tf.summary.FileWriter('logs/', sess.graph)
        sess.run(init)
        
        for train in range(1000):
            sess.run(train_step, feed_dict = {xs: x_data, ys: y_data})
            if train % 50 == 0:
                try:
                    ax.lines.remove(lines[0])
                except Exception:
                    pass
                summary_str = sess.run(merged, feed_dict = {xs: x_data, ys: y_data})
                writer.add_summary(summary_str, train)
    
                print(train, sess.run(loss, feed_dict = {xs: x_data, ys: y_data}))
                
                prediction_value = sess.run(y, feed_dict = {xs: x_data})
                lines = ax.plot(x_data, prediction_value, 'r-', lw = 5)
                plt.pause(1)
    
    • 基於 Softmax Regressions 的 MNIST 数据集(tensorboard 绘图)
    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    import numpy as np
    
    def add_layer(layoutname, inputs, in_size, out_size, act = None):
        with tf.name_scope(layoutname):
            with tf.name_scope('weights'):
                weights = tf.Variable(tf.zeros([in_size, out_size]), name = 'weights')
                w_hist = tf.summary.histogram("weights", weights)
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros(out_size), name = 'biases')
                b_hist = tf.summary.histogram("biases", biases)
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(tf.matmul(inputs, weights), biases)
            
            if act is None:
                outputs = Wx_plus_b
            else:
                outputs = act(Wx_plus_b)
            return outputs
            
    # Import data
    mnist_data_path = 'MNIST_data/'
    mnist = input_data.read_data_sets(mnist_data_path, one_hot = True)
    
    with tf.name_scope('Input'):
        x = tf.placeholder(tf.float32, [None, 28 * 28], name = 'input_x')
        y_ = tf.placeholder(tf.float32, [None, 10], name = 'target_y')
    
    y = add_layer("hidden_layout", x, 28*28, 10, act = tf.nn.softmax)
    y_hist = tf.summary.histogram('y', y)
    
    # labels 真实值 logits 预测值
    with tf.name_scope('loss'):
        cross_entroy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_,
                        logits = y))
        tf.summary.histogram('cross entropy', cross_entroy)
        tf.summary.scalar('cross entropy', cross_entroy)
    
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entroy)
    
    # Test trained model
    with tf.name_scope('test'):
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        tf.summary.scalar('accuracy', accuracy)
    
    init = tf.global_variables_initializer()
    merged = tf.summary.merge_all()
    
    with tf.Session() as sess:
        #logpath = r'/Users/randolph/PycharmProjects/TensorFlow/logs'
        writer = tf.summary.FileWriter('logs/', sess.graph)
        sess.run(init)
    
        for i in range(1000):
            if i % 10 == 0:
                feed = {x: mnist.test.images, y_: mnist.test.labels}
                result = sess.run([merged, accuracy], feed_dict = feed)
                summary_str = result[0]
                acc = result[1]
                writer.add_summary(summary_str, i)
                print(i, acc)
            else:
                batch_xs, batch_ys = mnist.train.next_batch(100)
                feed = {x: batch_xs, y_: batch_ys}
                sess.run(train_step, feed_dict = feed)
    
        print('final result: ', sess.run(accuracy, feed_dict = {x: mnist.test.images, y_: mnist.test.labels}))
    
    • 基於 CNN 的 MNIST 数据集(tensorboard 绘图)
    # 基于 MNIST 数据集 的 「CNN」(tensorboard 绘图)
    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    import numpy as np
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev = 0.1)
        return tf.Variable(initial)
        
    def bias_variable(shape):
        initial = tf.constant(0.1, shape = shape)
        return tf.Variable(initial)
    
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        
    def variable_summaries(var):
        """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
        with tf.name_scope('summaries'):
            mean = tf.reduce_mean(var)
            tf.summary.scalar('mean', mean)
            with tf.name_scope('stddev'):
                stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
            tf.summary.scalar('stddev', stddev)
            tf.summary.scalar('max', tf.reduce_max(var))
            tf.summary.scalar('min', tf.reduce_min(var))
            tf.summary.histogram('histogram', var)
    
    def add_layer(input_tensor, weights_shape, biases_shape, layer_name, act = tf.nn.relu, flag = 1):
        """Reusable code for making a simple neural net layer.
    
        It does a matrix multiply, bias add, and then uses relu to nonlinearize.
        It also sets up name scoping so that the resultant graph is easy to read,
        and adds a number of summary ops.
        """
        with tf.name_scope(layer_name):
            with tf.name_scope('weights'):
                weights = weight_variable(weights_shape)
                variable_summaries(weights)
            with tf.name_scope('biases'):
                biases = bias_variable(biases_shape)
                variable_summaries(biases)
            with tf.name_scope('Wx_plus_b'):
                if flag == 1:
                    preactivate = tf.add(conv2d(input_tensor, weights), biases)
                else:
                    preactivate = tf.add(tf.matmul(input_tensor, weights), biases)
                tf.summary.histogram('pre_activations', preactivate)
            if act == None:
                outputs = preactivate
            else:
                outputs = act(preactivate, name = 'activation')
                tf.summary.histogram('activation', outputs)
            return outputs
    
    def main():
        # Import data
        mnist_data_path = 'MNIST_data/'
        mnist = input_data.read_data_sets(mnist_data_path, one_hot = True)
        
        with tf.name_scope('Input'):
            x = tf.placeholder(tf.float32, [None, 28*28], name = 'input_x')
            y_ = tf.placeholder(tf.float32, [None, 10], name = 'target_y')
    
        # First Convolutional Layer
        x_image = tf.reshape(x, [-1, 28, 28 ,1])
        conv_1 = add_layer(x_image, [5, 5, 1, 32], [32], 'First_Convolutional_Layer', flag = 1)
        
        # First Pooling Layer
        pool_1 = max_pool_2x2(conv_1)
        
        # Second Convolutional Layer 
        conv_2 = add_layer(pool_1, [5, 5, 32, 64], [64], 'Second_Convolutional_Layer', flag = 1)
    
        # Second Pooling Layer 
        pool_2 = max_pool_2x2(conv_2)
    
        # Densely Connected Layer
        pool_2_flat = tf.reshape(pool_2, [-1, 7*7*64])
        dc_1 = add_layer(pool_2_flat, [7*7*64, 1024], [1024], 'Densely_Connected_Layer', flag = 0) 
        
        # Dropout
        keep_prob = tf.placeholder(tf.float32)
        dc_1_drop = tf.nn.dropout(dc_1, keep_prob)
        
        # Readout Layer
        y = add_layer(dc_1_drop, [1024, 10], [10], 'Readout_Layer', flag = 0)
        
        # Optimizer
        with tf.name_scope('cross_entroy'):
            cross_entroy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_,
                            logits = y))
            tf.summary.scalar('cross_entropy', cross_entroy)
            tf.summary.histogram('cross_entropy', cross_entroy)
        
        # Train
        with tf.name_scope('train'):
            train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entroy)
        
        # Test
        with tf.name_scope('accuracy'):
            with tf.name_scope('correct_prediction'):
                correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
            with tf.name_scope('accuracy'):
                accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
            tf.summary.scalar('accuracy', accuracy)
            
        sess = tf.InteractiveSession()
        merged = tf.summary.merge_all()
        train_writer = tf.summary.FileWriter('train/', sess.graph)
        test_writer = tf.summary.FileWriter('test/')
        tf.global_variables_initializer().run()
    
        def feed_dict(train):
            if train:
                batch_xs, batch_ys = mnist.train.next_batch(100)
                k = 0.5
            else:
                batch_xs, batch_ys = mnist.test.images, mnist.test.labels
                k = 1.0
            return {x: batch_xs, y_: batch_ys, keep_prob: k}
        
        # Train the model, and also write summaries.
        # Every 10th step, measure test-set accuracy, and write test summaries
        # All other steps, run train_step on training data, & add training summaries
        for i in range(10000):
            if i % 10 == 0: # Record summaries and test-set accuracy
                summary, acc = sess.run([merged, accuracy], feed_dict = feed_dict(False))
                test_writer.add_summary(summary, i)
                print("step %d, training accuracy %g" %(i, acc))
            else:   # Record train set summaries, and train
                if i % 100 == 99:   # Record execution stats
                    run_options = tf.RunOptions(trace_level = tf.RunOptions.FULL_TRACE)
                    run_metadata = tf.RunMetadata()
                    summary, _ = sess.run([merged, train_step], feed_dict = feed_dict(True), 
                                            options = run_options, run_metadata = run_metadata)
                    train_writer.add_run_metadata(run_metadata, 'step %d ' % i)
                    train_writer.add_summary(summary, i)
                    print('Adding run metadata for', i)
                else:
                    summary, _ = sess.run([merged, train_step], feed_dict = feed_dict(True))
                    train_writer.add_summary(summary, i)
    main()
    

    可能对于最后一个模型 CNN 的代码,需要一些 CNN 卷积神经网络的一些知识。例如什么是卷积、池化,还需要了解 TensorFlow 中用到的相应函数,例如tf.nn.conv2d()tf.nn.max_pool(),这里不再赘述。

    贴上最后一个模型的部分截图:

    • 代码部分:

    说明:上图右侧是 CNN 网络训练的步数以及对应的结果,程序需要运行挺久时间的,CPU 占用率也很高,建议挂在晚上跑,人去休息睡觉。总之,你们可以修改那个 range(10000),请量力而为


    上述代码运行完成之后,命令行中跳转到代码生成的「train」文件夹中(其和代码文件存在于同一文件夹中),然后输入 tensorboard --logdir .,等待程序反应之后,浏览器访问localhost:6006(当然你也可以自己定义端口)。如果不出意外,你会得到以下内容:

    • Scalars:

    • Graphs:

    • Distributions:

    • Histograms:

    关于各个模块的作用,以及各个变量的意义,我在此就不再赘述了。

    如果有读者对于 CNN 卷积神经网络有些陌生或者是遗忘,可以参考我的另外一篇文章 CNN on TensorFlow

    另外,如果读者们想在模型训练期间,做些「有趣的」事情,可以参考我的另一篇文章 Use WeChat to Monitor Your Network

    相关文章

      网友评论

      • d15a6a2724ab:求教一个问题:tensorboard中的histograms ,如果显示的变量是多维的(比如二维) ,histograms的横坐标表示什么意思呢?

      本文标题:「TensorFlow 1.0」 Tensorboard

      本文链接:https://www.haomeiwen.com/subject/apsxgttx.html