美文网首页
探究Handler的运行机制

探究Handler的运行机制

作者: 零星瓢虫 | 来源:发表于2020-02-04 22:10 被阅读0次

    Handler 作为 Android 开发中重要的消息通讯的工具,在我们日常开发中经常使用到,虽然经藏使用,也是一知半解,所以今天就去看一下 Handler 的源码到底怎么实现的呢?

    1 Handler 是什么呢?
    众 android 开发者周知, Handler 是我们用来进行线程间通讯的工具。像我们网络请求返回的数据,就会经常使用Handler把数据回传给主线程。然后主线程展示相关数据。

    2 为什么要用 Handler 呢?
    android 要求耗时的任务要在子线程中进行,不然会造成UI界面的卡顿,而我们的 UI 界面是在主线程。要把子线程的数据显示到主线程则就要用到 handler 了,不然,你在子线程直接刷新UI界面,程序会报错。

    3 看下我们平时如何用 Handler 的呢?

    public class TestActivity extends AppCompatActivity {
    
        Handler handler = new Handler(){
            @Override
            public void handleMessage(@NonNull Message msg) {
                switch (msg.what){
                    case 0x1111:
                        Toast.makeText(this,"收到子线程发来的消息了",Toast.LENGTH_LONG).show();
                        break;
                }
            }
        };
    
        @Override
        protected void onCreate(@Nullable Bundle savedInstanceState) {
            super.onCreate(savedInstanceState);
    
            new Thread(){
                @Override
                public void run() {
                    Message message = Message.obtain();
                    message.obj = "这是一个handler消息";
                    message.what = 0x1111;
                    handler.sendMessage(message);
                }
            };
    
        }
    }
    

    上面代码是我们 Handler 的常用方式,接下来去看下它内部具体是怎么实现的呢?进入源码中去查看;

    (1) 首先咱们看一下创建Handler都去做了哪些工作。

      Handler handler = new Handler(){
                @Override
                public void handleMessage(Message msg) {
                    super.handleMessage(msg);
                }
            };
    

    调用构造方法:

        public Handler() {
            this(null, false);
        }
    
      public Handler(Callback callback, boolean async) {
            if (FIND_POTENTIAL_LEAKS) {
                final Class<? extends Handler> klass = getClass();
                if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                        (klass.getModifiers() & Modifier.STATIC) == 0) {
                    Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                        klass.getCanonicalName());
                }
            }
    
            mLooper = Looper.myLooper();
            if (mLooper == null) {
                throw new RuntimeException(
                    "Can't create handler inside thread " + Thread.currentThread()
                            + " that has not called Looper.prepare()");
            }
            mQueue = mLooper.mQueue;
            mCallback = callback;
            mAsynchronous = async;
        }
    

    可以看到 handler 构造的过程中,如果你定义 handler 用了 static 修饰符的话,还会提示你会出现内存溢出的风险(这里和静态持有 Activity 有关)。接下来会去获取到一个 Looper 对象。同时把
    Looper 类里面的消息队列 mLooper.mQueue 赋值给了 Handler 类里面的队列常量 mQueue。下面我们继续看如何获取 Looper 对象的。

    mLooper = Looper.myLooper();
    进入到Looper类中。

      public static @Nullable Looper myLooper() {
            return sThreadLocal.get();
        }
    
    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
    private static Looper sMainLooper;  // guarded by Looper.class
    final MessageQueue mQueue;
    

    在 Looper 类里面维护了一个 sThreadLocal 的常量,我们获取到的 looper 是从这个常量中取的,既然是取的,那就一定会有地方去存储这个变量,并且这个设置的方法一定在我们构造函数之前。我们沿着关键字搜索发现在 prepare 方法的确有设置 looper 的方法:

       public static void prepare() {
            prepare(true);
        }
    
        private static void prepare(boolean quitAllowed) {
            if (sThreadLocal.get() != null) {
                throw new RuntimeException("Only one Looper may be created per thread");
            }
            sThreadLocal.set(new Looper(quitAllowed));
        }
    
    

    那我们会在哪里去调用 prepare 方法呢,于是按着方法调用一路往上寻找:

     public static void prepareMainLooper() {
            prepare(false);
            synchronized (Looper.class) {
                if (sMainLooper != null) {
                    throw new IllegalStateException("The main Looper has already been prepared.");
                }
                sMainLooper = myLooper();
            }
        }
    

    这里看门看到 Looper 类中的调用 prepareMainLooper() 方法,这里如果我们是在主线程里面创建的 Handler 对象就会调用到 prepareMainLooper() 方法,而事例中我们就是在主线程中调用,继续去查找调用 prepareMainLooper 方法的地方:

    public static void main(String[] args) {
            Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
    
            // CloseGuard defaults to true and can be quite spammy.  We
            // disable it here, but selectively enable it later (via
            // StrictMode) on debug builds, but using DropBox, not logs.
            CloseGuard.setEnabled(false);
    
            Environment.initForCurrentUser();
    
            // Set the reporter for event logging in libcore
            EventLogger.setReporter(new EventLoggingReporter());
    
            // Make sure TrustedCertificateStore looks in the right place for CA certificates
            final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
            TrustedCertificateStore.setDefaultUserDirectory(configDir);
    
            Process.setArgV0("<pre-initialized>");
    
            Looper.prepareMainLooper();
    
            // Find the value for {@link #PROC_START_SEQ_IDENT} if provided on the command line.
            // It will be in the format "seq=114"
            long startSeq = 0;
            if (args != null) {
                for (int i = args.length - 1; i >= 0; --i) {
                    if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {
                        startSeq = Long.parseLong(
                                args[i].substring(PROC_START_SEQ_IDENT.length()));
                    }
                }
            }
            ActivityThread thread = new ActivityThread();
            thread.attach(false, startSeq);
    
            if (sMainThreadHandler == null) {
                sMainThreadHandler = thread.getHandler();
            }
    
            if (false) {
                Looper.myLooper().setMessageLogging(new
                        LogPrinter(Log.DEBUG, "ActivityThread"));
            }
    
            // End of event ActivityThreadMain.
            Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
            Looper.loop();
    
            throw new RuntimeException("Main thread loop unexpectedly exited");
        }
    
    

    因为和主线程有关,我们就可以看看与主线程相关的线程类,在 ActivityThread 类主运行程序中找到了 prepareMainLooper() 方法,同时证明了在主线程中的确在我们构造 Handler 之前就已经初始化了 Looper 这个类,并设置到了ThreadLocal对象中。同时代码最后有个 Looper.loop() 方法先记下来,后续这里也会提到。

    Looper 类的设置和获取在这里都已经完成。这了顺便看一下为什么 Looper 创建了之后要放在一个 ThreadLocal 对象的数据结构里面?去看看 ThreadLocal 这个类干嘛的:

       public T get() {
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null) {
                ThreadLocalMap.Entry e = map.getEntry(this);
                if (e != null) {
                    @SuppressWarnings("unchecked")
                    T result = (T)e.value;
                    return result;
                }
            }
            return setInitialValue();
        }
    
    
       public void set(T value) {
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null)
                map.set(this, value);
            else
                createMap(t, value);
        }
    

    因为在 ThreadLocal 中主要用了 get 和 set 方法,我们主要看这两个方法。在这里,看到我们有个 ThreadLocalMap 通过线程 Thread 获取的。于是我们可以猜想到 ThreadLocal 是为了保证每个线程对应一个Looper,这样保证每个线程独享一份数据。

    到这里我们 Handler 整个初始化的过程涉及到的类进行了挖掘。目前主要涉及到Handler、Looper、ThreadLocal、MessageQueue 四个类。

    (2) 接下来我们看在子线程里面发送消息的时候,此时这些类又做了些什么呢?有没有其他的类再次参与进来呢?

    接下来继续 Handler 类中发送消息的相关代码细节:

        public final boolean sendMessage(Message msg)
        {
            return sendMessageDelayed(msg, 0);
        }
    
    
       public final boolean sendMessageDelayed(Message msg, long delayMillis)
        {
            if (delayMillis < 0) {
                delayMillis = 0;
            }
            return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
        }
    
        public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
            MessageQueue queue = mQueue;
            if (queue == null) {
                RuntimeException e = new RuntimeException(
                        this + " sendMessageAtTime() called with no mQueue");
                Log.w("Looper", e.getMessage(), e);
                return false;
            }
            return enqueueMessage(queue, msg, uptimeMillis);
        }
    
       private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
            msg.target = this;
            if (mAsynchronous) {
                msg.setAsynchronous(true);
            }
            return queue.enqueueMessage(msg, uptimeMillis);
        }
    

    sendMessage 方法最终会调用到 MessageQueue 里面的enqueueMessage 方法,继续到 MessageQueue 里面去查看相关方法:

     boolean enqueueMessage(Message msg, long when) {
            if (msg.target == null) {
                throw new IllegalArgumentException("Message must have a target.");
            }
            if (msg.isInUse()) {
                throw new IllegalStateException(msg + " This message is already in use.");
            }
    
            synchronized (this) {
                if (mQuitting) {
                    IllegalStateException e = new IllegalStateException(
                            msg.target + " sending message to a Handler on a dead thread");
                    Log.w(TAG, e.getMessage(), e);
                    msg.recycle();
                    return false;
                }
    
                msg.markInUse();
                msg.when = when;
                Message p = mMessages;
                boolean needWake;
                if (p == null || when == 0 || when < p.when) {
                    // New head, wake up the event queue if blocked.
                    msg.next = p;
                    mMessages = msg;
                    needWake = mBlocked;
                } else {
                    // Inserted within the middle of the queue.  Usually we don't have to wake
                    // up the event queue unless there is a barrier at the head of the queue
                    // and the message is the earliest asynchronous message in the queue.
                    needWake = mBlocked && p.target == null && msg.isAsynchronous();
                    Message prev;
                    for (;;) {
                        prev = p;
                        p = p.next;
                        if (p == null || when < p.when) {
                            break;
                        }
                        if (needWake && p.isAsynchronous()) {
                            needWake = false;
                        }
                    }
                    msg.next = p; // invariant: p == prev.next
                    prev.next = msg;
                }
    
                // We can assume mPtr != 0 because mQuitting is false.
                if (needWake) {
                    nativeWake(mPtr);
                }
            }
            return true;
        }
    

    msg.markInUse();
    msg.when = when;
    Message p = mMessages;
    boolean needWake;

    定位到上述这段主要代码,记录当前msg相关信息,并且如果当前MessageQueue 的 mMessages 为空的时候则会把这条消息当作第一条消息,设置相关的标记位。如果不为空,遍历循环出需要wake 唤醒发送的消息,则加到最后一条去。这里同时可以看到 MessageQueue 数据结构采用的是链表结构。最后调用到nativeWake 明显到了 native 层的调用,我们从处理消息的代码再进行回推。

    我们继续来到Handler类中,查找处理消息的 handleMessage 方法:

        public void handleMessage(Message msg) {
        }
        
        /**
         * Handle system messages here.
         */
        public void dispatchMessage(Message msg) {
            if (msg.callback != null) {
                handleCallback(msg);
            } else {
                if (mCallback != null) {
                    if (mCallback.handleMessage(msg)) {
                        return;
                    }
                }
                handleMessage(msg);
            }
        }
    
    

    dispatchMessage 后在 Handler 类中没发现其他地方调用,在上面提到的其他三个相关联的类再去找找。

    最终我们来到 Looper 类中的 loop 方法,里面可以看到 msg.target.dispatchMessage(msg) 方法,loop 这个方法我们在ActivityThread 中提到过会被调用,也就是说程序主线程启动的时候 dispatchMessage 方法就在一直执行了 ,那就看看 loop 到底在干啥吧:

      public static void loop() {
            final Looper me = myLooper();
            if (me == null) {
                throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
            }
            final MessageQueue queue = me.mQueue;
    
            // Make sure the identity of this thread is that of the local process,
            // and keep track of what that identity token actually is.
            Binder.clearCallingIdentity();
            final long ident = Binder.clearCallingIdentity();
    
            // Allow overriding a threshold with a system prop. e.g.
            // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
            final int thresholdOverride =
                    SystemProperties.getInt("log.looper."
                            + Process.myUid() + "."
                            + Thread.currentThread().getName()
                            + ".slow", 0);
    
            boolean slowDeliveryDetected = false;
    
            for (;;) {
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
    
                // This must be in a local variable, in case a UI event sets the logger
                final Printer logging = me.mLogging;
                if (logging != null) {
                    logging.println(">>>>> Dispatching to " + msg.target + " " +
                            msg.callback + ": " + msg.what);
                }
    
                final long traceTag = me.mTraceTag;
                long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
                long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
                if (thresholdOverride > 0) {
                    slowDispatchThresholdMs = thresholdOverride;
                    slowDeliveryThresholdMs = thresholdOverride;
                }
                final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
                final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
    
                final boolean needStartTime = logSlowDelivery || logSlowDispatch;
                final boolean needEndTime = logSlowDispatch;
    
                if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                    Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
                }
    
                final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
                final long dispatchEnd;
                try {
                    msg.target.dispatchMessage(msg);
                    dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
                } finally {
                    if (traceTag != 0) {
                        Trace.traceEnd(traceTag);
                    }
                }
                if (logSlowDelivery) {
                    if (slowDeliveryDetected) {
                        if ((dispatchStart - msg.when) <= 10) {
                            Slog.w(TAG, "Drained");
                            slowDeliveryDetected = false;
                        }
                    } else {
                        if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                                msg)) {
                            // Once we write a slow delivery log, suppress until the queue drains.
                            slowDeliveryDetected = true;
                        }
                    }
                }
                if (logSlowDispatch) {
                    showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
                }
    
                if (logging != null) {
                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
                }
    
                // Make sure that during the course of dispatching the
                // identity of the thread wasn't corrupted.
                final long newIdent = Binder.clearCallingIdentity();
                if (ident != newIdent) {
                    Log.wtf(TAG, "Thread identity changed from 0x"
                            + Long.toHexString(ident) + " to 0x"
                            + Long.toHexString(newIdent) + " while dispatching to "
                            + msg.target.getClass().getName() + " "
                            + msg.callback + " what=" + msg.what);
                }
    
                msg.recycleUnchecked();
            }
        }
    

    定位到for语句死循环那段代码:

    for (;;) {
    Message msg = queue.next(); // might block
    if (msg == null) {
    // No message indicates that the message queue is quitting.
    return;
    }
    ....
    }

    不断遍历去取消息队列里面的数据,只有当拿不到 msg 数据的时候会停止。 继续看 MessageQueue 类中 queue.next() 方法:

    Message next() {
            // Return here if the message loop has already quit and been disposed.
            // This can happen if the application tries to restart a looper after quit
            // which is not supported.
            final long ptr = mPtr;
            if (ptr == 0) {
                return null;
            }
    
            int pendingIdleHandlerCount = -1; // -1 only during first iteration
            int nextPollTimeoutMillis = 0;
            for (;;) {
                if (nextPollTimeoutMillis != 0) {
                    Binder.flushPendingCommands();
                }
    
                nativePollOnce(ptr, nextPollTimeoutMillis);
    
                synchronized (this) {
                    // Try to retrieve the next message.  Return if found.
                    final long now = SystemClock.uptimeMillis();
                    Message prevMsg = null;
                    Message msg = mMessages;
                    if (msg != null && msg.target == null) {
                        // Stalled by a barrier.  Find the next asynchronous message in the queue.
                        do {
                            prevMsg = msg;
                            msg = msg.next;
                        } while (msg != null && !msg.isAsynchronous());
                    }
                    if (msg != null) {
                        if (now < msg.when) {
                            // Next message is not ready.  Set a timeout to wake up when it is ready.
                            nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                        } else {
                            // Got a message.
                            mBlocked = false;
                            if (prevMsg != null) {
                                prevMsg.next = msg.next;
                            } else {
                                mMessages = msg.next;
                            }
                            msg.next = null;
                            if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                            msg.markInUse();
                            return msg;
                        }
                    } else {
                        // No more messages.
                        nextPollTimeoutMillis = -1;
                    }
    
                    // Process the quit message now that all pending messages have been handled.
                    if (mQuitting) {
                        dispose();
                        return null;
                    }
    
                    // If first time idle, then get the number of idlers to run.
                    // Idle handles only run if the queue is empty or if the first message
                    // in the queue (possibly a barrier) is due to be handled in the future.
                    if (pendingIdleHandlerCount < 0
                            && (mMessages == null || now < mMessages.when)) {
                        pendingIdleHandlerCount = mIdleHandlers.size();
                    }
                    if (pendingIdleHandlerCount <= 0) {
                        // No idle handlers to run.  Loop and wait some more.
                        mBlocked = true;
                        continue;
                    }
    
                    if (mPendingIdleHandlers == null) {
                        mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                    }
                    mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
                }
    
                // Run the idle handlers.
                // We only ever reach this code block during the first iteration.
                for (int i = 0; i < pendingIdleHandlerCount; i++) {
                    final IdleHandler idler = mPendingIdleHandlers[i];
                    mPendingIdleHandlers[i] = null; // release the reference to the handler
    
                    boolean keep = false;
                    try {
                        keep = idler.queueIdle();
                    } catch (Throwable t) {
                        Log.wtf(TAG, "IdleHandler threw exception", t);
                    }
    
                    if (!keep) {
                        synchronized (this) {
                            mIdleHandlers.remove(idler);
                        }
                    }
                }
    
                // Reset the idle handler count to 0 so we do not run them again.
                pendingIdleHandlerCount = 0;
    
                // While calling an idle handler, a new message could have been delivered
                // so go back and look again for a pending message without waiting.
                nextPollTimeoutMillis = 0;
            }
        }
    

    这里可以看到其实 next() 方法里面也有个死循环,其主要的作用就是要去取到下一个待处理的 msg,取到 msg 之后最终会传到 handler 的 handlerMessage 方法进行处理。这样我们就从handlerMessage 方法中取到了下一条待处理的消息数据;

    至此整个方法链就连上了。最后我们总结一下:
    1 首先,创建 Handler 的主线程会通过 ActivityThread 去创建一个 Looper ,并通过 prepare 方法,把当前线程和 Looper 绑定存到一个 ThreadLocal 类中。同时会开启 Looper 的 loop() 方法进行死循环查找信息。

    2 当 Handler 初始化的时候,handler 会拿到 looper 类,同时将 looper 的 MessageQueue 赋值给 handler 中的 MessageQueue 队列。

    3 Handler发送消息,此时会将消息添加到 handler 中的 MessageQueue 的最后面,同时 Looper 中的 looper 循环会取 MessgeQueue 中的消息,通过 Handler 的 dispatchMessage 分发到handlerMessage 最终处理调 msg 事件信息。

    最后有个面试问到的问题,如果是在子线程里面可以创建 Handler 发送和接收消息嘛?

    /**
      * Class used to run a message loop for a thread.  Threads by default do
      * not have a message loop associated with them; to create one, call
      * {@link #prepare} in the thread that is to run the loop, and then
      * {@link #loop} to have it process messages until the loop is stopped.
      *
      * <p>Most interaction with a message loop is through the
      * {@link Handler} class.
      *
      * <p>This is a typical example of the implementation of a Looper thread,
      * using the separation of {@link #prepare} and {@link #loop} to create an
      * initial Handler to communicate with the Looper.
      *
      * <pre>
      *  class LooperThread extends Thread {
      *      public Handler mHandler;
      *
      *      public void run() {
      *          Looper.prepare();
      *
      *          mHandler = new Handler() {
      *              public void handleMessage(Message msg) {
      *                  // process incoming messages here
      *              }
      *          };
      *
      *          Looper.loop();
      *      }
      *  }</pre>
      */
    

    可以看到 Looper 类上面的注释,当然是可以的了。只不过我们要自己创建 Looper 了并且去调用 prepare 和 loop 方法循环查找消息。不然直接在子线程处理消息,程序会报错。

    相关文章

      网友评论

          本文标题:探究Handler的运行机制

          本文链接:https://www.haomeiwen.com/subject/atdhxhtx.html