美文网首页
Loss function

Loss function

作者: e6fa7dc2796d | 来源:发表于2018-08-07 19:29 被阅读180次

常见的损失函数

通常机器学习每一个算法中都会有一个目标函数,算法的求解过程是通过对这个目标函数优化的过程。在分类或者回归问题中,通常使用损失函数(代价函数)作为其目标函数。损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的算法使用的损失函数不一样。 

损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。通常表示为如下: 

Loss function

1. 0-1损失函数和绝对值损失函数 

0-1损失是指,预测值和目标值不相等为1,否则为0: 

感知机就是用的这种损失函数。但是由于相等这个条件太过严格,因此我们可以放宽条件,即满足 |Y−f(X)|

绝对值损失函数为: 

2. log对数损失函数 

逻辑斯特回归的损失函数就是对数损失函数,在逻辑斯特回归的推导中,它假设样本服从伯努利分布(0-1)分布,然后求得满足该分布的似然函数,接着用对数求极值。逻辑斯特回归并没有求对数似然函数的最大值,而是把极大化当做一个思想,进而推导它的风险函数为最小化的负的似然函数。从损失函数的角度上,它就成为了log损失函数。 

log损失函数的标准形式: 

在极大似然估计中,通常都是先取对数再求导,再找极值点,这样做是方便计算极大似然估计。损失函数L(Y,P(Y|X))L(Y,P(Y|X))是指样本X在分类Y的情况下,使概率P(Y|X)达到最大值(利用已知的样本分布,找到最大概率导致这种分布的参数值) 

3. 平方损失函数 

最小二乘法是线性回归的一种方法,它将回归的问题转化为了凸优化的问题。最小二乘法的基本原则是:最优拟合曲线应该使得所有点到回归直线的距离和最小。通常用欧几里得距离进行距离的度量。平方损失的损失函数为: 

4. 指数损失函数 

AdaBoost就是一指数损失函数为损失函数的。 

指数损失函数的标准形式: 

5. Hinge损失函数 

Hinge损失函数和SVM是息息相关的。在线性支持向量机中,最优化问题可以等价于 

这个式子和如下的式子非常像: 

其中l(wxi+byi)l(wxi+byi)就是hinge损失函数,后面相当于L2正则项。 

Hinge函数的标准形式: 

y是预测值,在-1到+1之间,t为目标值(-1或+1)。其含义为,y的值在-1和+1之间就可以了,并不鼓励|y|>1|y|>1,即并不鼓励分类器过度自信,让某个正确分类的样本的距离分割线超过1并不会有任何奖励,从而使分类器可以更专注于整体的分类误差。

相关文章

  • sklearn-loss function

    我认为各个模型核心就是loss function,loss function不同就是不同的模型,具有相同的loss...

  • Loss function

    常见的损失函数 通常机器学习每一个算法中都会有一个目标函数,算法的求解过程是通过对这个目标函数优化的过程。在分类或...

  • cost function and loss function

    在机器学习领域我们经常会遇到cost function和loss function(也叫error functio...

  • Day4 Loss Function

    关键词:Loss Function、正规化Regularization、 SVM Loss,Softmax Los...

  • 【ML】理论篇

    各大损失函数总结: pytorch loss function 总结

  • Review: Gradient Descent

    如果我们想找一个最好的function,我们就需要optimization L:loss function ?:...

  • 机器学习(5)——代价函数误差分析

    代价函数简介   代价函数(Cost Function),通常也被称为损失函数(Loss Function)。这类...

  • [ML] Loss_Function

    1. Loss Function(损失函数) 损失函数可以看做误差部分(loss term)+正则化部分(regu...

  • 07.17

    评分函数(score function),它是原始图像数据到类别分值的映射。损失函数(loss function)...

  • Loss Function in Metric Learning

    General Idea: For Classification Task:Input the feature v...

网友评论

      本文标题:Loss function

      本文链接:https://www.haomeiwen.com/subject/auaavftx.html