美文网首页
Aster论文:SPN校正图像部分理解

Aster论文:SPN校正图像部分理解

作者: 寒夏凉秋 | 来源:发表于2020-07-04 13:22 被阅读0次

    论文题目:Aster:An attentional scene Text Recognizer with Flexible Rectification

    论文中用了SPN网络进行弯曲文字图像的校正,其SPN核心idea为:model spatical transform as a learnable network.

    空间变换基础

    利用矩阵变换实现平移、旋转、缩放

    2D图像

    平移:

    \left[\begin{array}{l} x^{\prime} \\ y \\ 1 \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & t x \\ 0 & 1 & t y \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]=\left[\begin{array}{c} x+t x \\ y+t y \\ 1 \end{array}\right]

    旋转:
    \left[\begin{array}{l} x^{\prime} \\ y \\ 1 \end{array}\right]=\left[\begin{array}{ccc} \cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]=\left[\begin{array}{c} x \cos \theta+y \sin \theta \\ x \sin \theta+y \cos \theta \\ 1 \end{array}\right]

    缩放:

    \left[\begin{array}{l} x^{\prime} \\ y^{\prime} \\ 1 \end{array}\right]=\left[\begin{array}{ccc} s x & 0 & 0 \\ 0 & s y & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]=\left[\begin{array}{c} x^{*} s x \\ y^{*} s y \\ 1 \end{array}\right]

    所以对于一副2D图像来说,只需要 6个参数就能实现对图像的平移、缩放、旋转等变换.即:

    \left[\begin{array}{lll} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{array}\right]\left(\begin{array}{c} x_{i}^{t} \\ y_{i}^{t} \\ 1 \end{array}\right)

    Aster中的SPN结构

    在Aster中,作者应用SPN网络对输入文字图像进校正.其主要结构如图所示:


    image
    • 首先将输入图片resize.
    • 通过Localization Network去定位图像中的K个控制点C(control points),可以理解为图像中文字区域上下边界点.
    • 利用我们的先验知识,校正后的文字区域应该平整地位于图像中心区域,那我们可以得到预设的校正后的K个控制点(control points)的坐标C^{'}(The control points on the output image are placed at fixed locations along the top
      and bottom image borders with equal spacings. )
    • 利用C^{'}C的位置关系构建变换矩阵P,利用P将原图的每一个像素变化为 rectified Image.

    符号定义:

    原始输入图像为I
    经过resize,尺寸变小的图像记作:I_{d}
    校正后的图像记作I_{r}

    Localization Network

    aster 利用Localization Network隐形地去学习K个控制点.

    对于原始图I,其控制点集C^{'}被定义为:C^{'}=[c^{'}_{1},……,C^{'}_{k}]\in \Re^{2 \times K},其中c^{'}_{k}=[x_{k},y_{k}]代表第k个控制点的坐标.

    对于校正后的图像I_{r}的控制点集C同样定义;

    localization network 几层卷积+max-pooling 然后最后一层是全连接网络,网络输出size 为2K,代表了K个控制点坐标.

    The network consists of a few convolutional layers, with max-pooling layers inserted between them. The output layer is a fully-connected layer whose output size is 2K.

    利用localization network直接回归得到C^{'}

    代码部分:

    class LocalizationNetwork(nn.Module):
        """ Localization Network of RARE, which predicts C' (K x 2) from I (I_width x I_height) """
    
        def __init__(self, F, I_channel_num):
            super(LocalizationNetwork, self).__init__()
            self.F = F
            self.I_channel_num = I_channel_num
            self.conv = nn.Sequential(
                nn.Conv2d(in_channels=self.I_channel_num, out_channels=64, kernel_size=3, stride=1, padding=1,
                          bias=False), nn.BatchNorm2d(64), nn.ReLU(True),
                nn.MaxPool2d(2, 2),  # batch_size x 64 x I_height/2 x I_width/2
                nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(True),
                nn.MaxPool2d(2, 2),  # batch_size x 128 x I_height/4 x I_width/4
                nn.Conv2d(128, 256, 3, 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True),
                nn.MaxPool2d(2, 2),  # batch_size x 256 x I_height/8 x I_width/8
                nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(True),
                nn.AdaptiveAvgPool2d(1)  # batch_size x 512
            )
    
            self.localization_fc1 = nn.Sequential(nn.Linear(512, 256), nn.ReLU(True))
            self.localization_fc2 = nn.Linear(256, self.F * 2)
    
            # Init fc2 in LocalizationNetwork
            self.localization_fc2.weight.data.fill_(0)
            """ see RARE paper Fig. 6 (a) """
            ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
            ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
            ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
            ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
            ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
            initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
            self.localization_fc2.bias.data = torch.from_numpy(initial_bias).float().view(-1)
    
        def init_weights(self,pretrained=None):
            if pretrained is None:
                for m in self.conv.modules():
                    if isinstance(m, nn.Conv2d):
                        kaiming_init(m)
                    elif isinstance(m, nn.BatchNorm2d):
                        constant_init(m, 1)
                    elif isinstance(m, nn.Linear):
                        normal_init(m, std=0.01)
            elif isinstance(pretrained,str):
                ##TODO:load pretrain model from pth
                pass
            else:
                raise TypeError('pretrained must be a str or None')
    
        def forward(self, batch_I):
            """
            input:     batch_I : Batch Input Image [batch_size x I_channel_num x I_height x I_width]
            output:    batch_C_prime : Predicted coordinates of fiducial points for input batch [batch_size x F x 2]
            """
            batch_size = batch_I.size(0)
            features = self.conv(batch_I).view(batch_size, -1)
            batch_C_prime = self.localization_fc2(self.localization_fc1(features)).view(batch_size, self.F, 2)
            return batch_C_prime
    

    grid generator

    image

    如图所示,我们期望通过学习出来的C^{'}与预设C的位置关系学习到一个变换矩阵T,使得我们能够应用变换矩阵T到整个输入图,从而得到校正后的图像I_{r}

    前面我们知道只要6个参数就可以对2d图像进行变换.所以我们定义了 2D TPS transformation矩阵T
    为一个2X(K+3)的一个矩阵:
    \mathbf{T}=\left[\begin{array}{llll} a_{0} & a_{1} & a_{2} & \mathbf{u} \\ b_{0} & b_{1} & b_{2} & \mathbf{v} \end{array}\right]
    其中\mathbf{u}, \mathbf{v} \in \Re^{1 \times K}(与前面K个控制点相对应上,充分利用控制点信息)

    给定一个2D 的点 \mathbf{p}=\left[x_{p}, y_{p}\right]^{\top},TPS 通过线性投影映射T得到其变换后的点p^{'}

    \mathbf{p}^{\prime}=\mathbf{T}\left[\begin{array}{c} 1 \\ \mathbf{p} \\ \phi\left(\left\|\mathbf{p}-\mathbf{c}_{1}\right\|\right) \\ \vdots \\ \phi\left(\left\|\mathbf{p}-\mathbf{c}_{K}\right\|\right) \end{array}\right]

    其中\phi(r)=r^{2} \log (r)代表了核函数计算像素点p与控制点c_{k}的欧式距离.

    我们通过C^{'}C之间的线性映射关系来得到变换矩阵T,那么

    \mathbf{c}_{i}^{\prime}=\mathbf{T}\left[\begin{array}{c} 1 \\ \mathbf{c}_{i} \\ \phi\left(\left\|\mathbf{c}_{i}-\mathbf{c}_{1}\right\|\right) \\ \vdots \\ \phi\left(\left\|\mathbf{c}_{i}-\mathbf{c}_{K}\right\|\right) \end{array}\right], i=1, \ldots, K

    其中边界值的设定为:
    \begin{array}{l} 0=\mathbf{u 1} \\ 0=\mathbf{v 1} \\ 0=\mathbf{u C}_{x}^{\top} \\ 0=\mathbf{v C}_{y}^{\top} \end{array}

    根据以上公式,我们得到:
    \begin{aligned} \mathbf{T} \Delta_{\mathbf{C}} &=\left[\begin{array}{lll} \mathbf{C}^{\prime} & \mathbf{0}^{2 \times 3} \end{array}\right] \\ \mathbf{\Delta}_{\mathbf{C}} &=\left[\begin{array}{ccc} \mathbf{1}^{1 \times K} & \mathbf{0} & \mathbf{0} \\ \mathbf{C} & \mathbf{0} & \mathbf{0} \\ \hat{\mathbf{C}} & \mathbf{1}^{K \times 1} & \mathbf{C}^{\top} \end{array}\right] \end{aligned}

    其中\hat{\mathbf{C}} \in \Re^{K \times K}是一个K*K的矩阵,\hat{C}_{i,j}=\phi\left(\left\|\mathbf{c}_{i}-\mathbf{c}_{j}\right\|\right),
    通过计算\Delta{C},我们可以求得变换矩阵T:
    \mathbf{T}=\left[\begin{array}{ll} \mathbf{C}^{\prime} & \mathbf{0}^{2 \times 3} \end{array}\right] \boldsymbol{\Delta}_{\mathbf{C}}^{-1}

    所以整个gird-generator的结构示意图如下所示:


    image

    通过localization network回归得到的C^{'}与预设的C构建T矩阵,然后再将T矩阵应用到每个像素p上得到校正后图像;

    代码部分:

    class GridGenerator(nn.Module):
        """ Grid Generator of RARE, which produces P_prime by multipling T with P """
    
        def __init__(self, F, I_r_size):
            """ Generate P_hat and inv_delta_C for later """
            super(GridGenerator, self).__init__()
            self.eps = 1e-6
            self.I_r_height, self.I_r_width = I_r_size
            self.F = F
            self.C = self._build_C(self.F)  # F x 2
            self.P = self._build_P(self.I_r_width, self.I_r_height)
            ## for multi-gpu, you need register buffer
            self.register_buffer("inv_delta_C", torch.tensor(self._build_inv_delta_C(self.F, self.C)).float())  # F+3 x F+3
            self.register_buffer("P_hat", torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float())  # n x F+3
            ## for fine-tuning with different image width, you may use below instead of self.register_buffer
            # self.inv_delta_C = torch.tensor(self._build_inv_delta_C(self.F, self.C)).float().cuda()  # F+3 x F+3
            # self.P_hat = torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float().cuda()  # n x F+3
    
        def _build_C(self, F):
            """ Return coordinates of fiducial points in I_r; C """
            ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
            ctrl_pts_y_top = -1 * np.ones(int(F / 2))
            ctrl_pts_y_bottom = np.ones(int(F / 2))
            ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
            ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
            C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
            return C  # F x 2
    
        def _build_inv_delta_C(self, F, C):
            """ Return inv_delta_C which is needed to calculate T """
            hat_C = np.zeros((F, F), dtype=float)  # F x F
            for i in range(0, F):
                for j in range(i, F):
                    r = np.linalg.norm(C[i] - C[j])
                    hat_C[i, j] = r
                    hat_C[j, i] = r
            np.fill_diagonal(hat_C, 1)
            hat_C = (hat_C ** 2) * np.log(hat_C)
            # print(C.shape, hat_C.shape)
            delta_C = np.concatenate(  # F+3 x F+3
                [
                    np.concatenate([np.ones((F, 1)), C, hat_C], axis=1),  # F x F+3
                    np.concatenate([np.zeros((2, 3)), np.transpose(C)], axis=1),  # 2 x F+3
                    np.concatenate([np.zeros((1, 3)), np.ones((1, F))], axis=1)  # 1 x F+3
                ],
                axis=0
            )
            inv_delta_C = np.linalg.inv(delta_C)
            return inv_delta_C  # F+3 x F+3
    
        def _build_P(self, I_r_width, I_r_height):
            I_r_grid_x = (np.arange(-I_r_width, I_r_width, 2) + 1.0) / I_r_width  # self.I_r_width
            I_r_grid_y = (np.arange(-I_r_height, I_r_height, 2) + 1.0) / I_r_height  # self.I_r_height
            P = np.stack(  # self.I_r_width x self.I_r_height x 2
                np.meshgrid(I_r_grid_x, I_r_grid_y),
                axis=2
            )
            return P.reshape([-1, 2])  # n (= self.I_r_width x self.I_r_height) x 2
    
        def _build_P_hat(self, F, C, P):
            n = P.shape[0]  # n (= self.I_r_width x self.I_r_height)
            P_tile = np.tile(np.expand_dims(P, axis=1), (1, F, 1))  # n x 2 -> n x 1 x 2 -> n x F x 2
            C_tile = np.expand_dims(C, axis=0)  # 1 x F x 2
            P_diff = P_tile - C_tile  # n x F x 2
            rbf_norm = np.linalg.norm(P_diff, ord=2, axis=2, keepdims=False)  # n x F
            rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + self.eps))  # n x F
            P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1)
            return P_hat  # n x F+3
    
        def build_P_prime(self, batch_C_prime):
            """ Generate Grid from batch_C_prime [batch_size x F x 2] """
            device = batch_C_prime.device
            batch_size = batch_C_prime.size(0)
            batch_inv_delta_C = self.inv_delta_C.repeat(batch_size, 1, 1)
            batch_P_hat = self.P_hat.repeat(batch_size, 1, 1)
            batch_C_prime_with_zeros = torch.cat((batch_C_prime, torch.zeros(
                batch_size, 3, 2).float().to(device)), dim=1)  # batch_size x F+3 x 2
            batch_T = torch.bmm(batch_inv_delta_C, batch_C_prime_with_zeros)  # batch_size x F+3 x 2
            batch_P_prime = torch.bmm(batch_P_hat, batch_T)  # batch_size x n x 2
            return batch_P_prime  # batch_size x n x 2
    

    再通过sampler 进行p点采样信息,防止变换后的p点超出边界.

    这样,aster完成了对弯曲文本图像的校正.

    网络不需要额外标注信息,因为文字识别的loss导致前面cnn梯度信息专注于文字区域本身,这部分信息可以有效利用作为图像校正的loss.
    而TPS不用tanh作为激活函数,而是采用了最后一层全连接网络的方式,fc层作为线性激活函数,能在训练阶段保留更多的期望的梯度信息.

    一点点小疑惑:

    1. 在变换中为什么选择了\phi(r)=r^{2} \log (r)作为核函数,相比其他核函数的优势?
    2. 变换方式的选择
      \mathbf{c}_{i}^{\prime}=\mathbf{T}\left[\begin{array}{c} 1 \\ \mathbf{c}_{i} \\ \phi\left(\left\|\mathbf{c}_{i}-\mathbf{c}_{1}\right\|\right) \\ \vdots \\ \phi\left(\left\|\mathbf{c}_{i}-\mathbf{c}_{K}\right\|\right) \end{array}\right], i=1, \ldots, K

    对于C_{i}为何它要计算它与所有控制点的欧式距离(为何不是只计算相对应的点的距离)

    相关文章

      网友评论

          本文标题:Aster论文:SPN校正图像部分理解

          本文链接:https://www.haomeiwen.com/subject/avqlactx.html