美文网首页动态规划
730. Count Different Palindromic

730. Count Different Palindromic

作者: 黑山老水 | 来源:发表于2018-04-18 11:31 被阅读24次

    Description:

    Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7.

    A subsequence of a string S is obtained by deleting 0 or more characters from S.

    A sequence is palindromic if it is equal to the sequence reversed.

    Two sequences A_1, A_2, ... and B_1, B_2, ... are different if there is some i for which A_i != B_i.

    Example:

    Input: 
    S = 'bccb'
    Output: 6
    Explanation: 
    The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'.
    Note that 'bcb' is counted only once, even though it occurs twice.
    
    Input: 
    S = 'abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba'
    Output: 104860361
    Explanation: 
    There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.
    

    Link:

    https://leetcode.com/problems/count-different-palindromic-subsequences/description/

    解题方法:

    参考 http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-730-count-different-palindromic-subsequences/
    与允许duplicate的版本相似,当左右不相等时:DP[start][end] = DP[start + 1][end] + DP[start][end - 1] - DP[start + 1][end - 1];
    当左右相等时,有三种情况:
    a xxxx a
    DP[start][end] = 2 * DP[start + 1][end - 1] + 2; 除了乘2以外,还多了a与aa
    a xxxa a
    DP[start][end] = 2 * DP[start + 1][end - 1] + 1; 多了一个aa
    a axxa a
    DP[start][end] = 2 * DP[start + 1][end - 1] - DP[left + 1][right - 1]; 需要减去中间aa之间重叠的部分

    Tips:

    每次都 + 再 %,防止数据过大

    Time Complexity:

    O(n ^ 3)

    完整代码:

    int countPalindromicSubsequences(string S) {
        int len = S.size();
        if(!len)
            return 0;
        vector<vector<int>> DP(len, vector<int>(len, 0));
        long int M=1000000007;
        for(int i = 0; i < len; i++)
            DP[i][i] = 1;
        for(int l = 2; l <= len; l++) {
            for(int start = 0; start + l - 1 < len; start++) {
                int end = start + l - 1;
                if(S[start] == S[end]) {
                    int cnt = 0;
                    int left = start + 1;
                    int right = end - 1;
                    while(left <= right && S[left] != S[start]) left++;
                    while(left <= right && S[right] != S[start]) right--;
                    if(left > right)
                        DP[start][end] = 2 * DP[start + 1][end - 1] + 2;
                    else if(left == right)
                        DP[start][end] = 2 * DP[start + 1][end - 1] + 1;
                    else
                        DP[start][end] = 2 * DP[start + 1][end - 1] - DP[left + 1][right - 1];
                }
                else
                    DP[start][end] = DP[start + 1][end] + DP[start][end - 1] - DP[start + 1][end - 1];
                DP[start][end] = (DP[start][end] + M) % M;
            }
        }
        return DP[0][len - 1];
    }
    

    相关文章

      网友评论

        本文标题:730. Count Different Palindromic

        本文链接:https://www.haomeiwen.com/subject/balvkftx.html