简介
hashmap是什么,估计学Java的人都懂。那我就不啰嗦了,本文主要是基于Java8,下面主要以下几个方面学习一下:
1)HashMap的数据结构、负载因子
2)HashMap的put和get方法
3)HashMap的碰撞问题
4)HashMap的扩容、Rehash
源码分析
HashMap的结构
HashMap在Java1.7里使用的是数组+链表的数据结构,在Java1.8里使用的是数组+链表+红黑树。
其底层数据结构是数组称之为哈希桶,每个桶里面放的是链表,链表中的每个节点,就是哈希表中的每个元素。
HashMap处理“碰撞”增加了红黑树这种数据结构,当碰撞结点较少时,采用链表存储,当较大时(>8个),采用红黑树(特点是查询时间是O(logn))存储(有一个阀值控制,大于阀值(8个),将链表存储转换成红黑树存储。
先看一下挂载在哈希表上的元素,链表的结构:
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;//哈希值
final K key;//key
V value;//value
Node<K,V> next;//链表后置节点
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
//每一个节点的hash值,是将key的hashCode 和 value的hashCode 亦或得到的。
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
//设置新的value 同时返回旧value
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
由此可知,这是一个单链表。每一个节点的hash值,是将key的hashCode 和 value的hashCode 亦或得到的。
HashMap的构造函数
下面代码有几个注意的地方,其余的细节请看代码注释:
1)加载因子:一般HashMap的扩容的临界点是当前HashMap的大小 > DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY
2)初始化容量threshold:它并不是你指定的容量大小,而是会找最接近的你指定值的最接近2的次方。(请看tableSizeFor方法)
那为啥是2的次方?
为了让HashMap的元素存放更均匀。最理想的状态是,每个Entry数组位置都只有一个位置,即next没有值,也就是没有单链表,这样查询效率高,不用遍历单链表,更不用去用equals比较K。一般考虑分布均匀,都会用到%(取模),哈希值%容量=bucketIndex。
//最大容量 2的30次方
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认的加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//哈希桶,存放链表。 长度是2的N次方,或者初始化时为0.
transient Node<K,V>[] table;
//加载因子,用于计算哈希表元素数量的阈值。 threshold = 哈希桶.length * loadFactor;
final float loadFactor;
//哈希表内元素数量的阈值,当哈希表内元素数量超过阈值时,会发生扩容resize()。
int threshold;
public HashMap() {
//默认构造函数,赋值加载因子为默认的0.75f
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(int initialCapacity) {
//指定初始化容量的构造函数
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//同时指定初始化容量 以及 加载因子, 用的很少,一般不会修改loadFactor
public HashMap(int initialCapacity, float loadFactor) {
//边界处理
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
//初始容量最大不能超过2的30次方
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//显然加载因子不能为负数
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
//设置阈值为 》=初始化容量的 2的n次方的值
this.threshold = tableSizeFor(initialCapacity);
}
//新建一个哈希表,同时将另一个map m 里的所有元素加入表中
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
//根据期望容量cap,返回2的n次方形式的 哈希桶的实际容量 length。 返回值一般会>=cap
static final int tableSizeFor(int cap) {
//经过下面的 或 和位移 运算, n最终各位都是1。
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
//判断n是否越界,返回 2的n次方作为 table(哈希桶)的阈值
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
//将另一个Map的所有元素加入表中,参数evict初始化时为false,其他情况为true
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
//拿到m的元素数量
int s = m.size();
//如果数量大于0
if (s > 0) {
//如果当前表是空的
if (table == null) { // pre-size
//根据m的元素数量和当前表的加载因子,计算出阈值
float ft = ((float)s / loadFactor) + 1.0F;
//修正阈值的边界 不能超过MAXIMUM_CAPACITY
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
//如果新的阈值大于当前阈值
if (t > threshold)
//返回一个 》=新的阈值的 满足2的n次方的阈值
threshold = tableSizeFor(t);
}
//如果当前元素表不是空的,但是 m的元素数量大于阈值,说明一定要扩容。
else if (s > threshold)
resize();
//遍历 m 依次将元素加入当前表中。
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
HashMap的碰撞问题
碰撞:所谓“碰撞”就是多个元素计算得出相同的hashCode,在put时出现冲突。
Java中HashMap是利用“拉链法”处理HashCode的碰撞问题。当两个不同的键却有相同的hashCode时,他们会存储在同一个bucket位置的链表中。键对象的equals()来找到键值对,如上面的结构图解。
而key的hash值,并不仅仅只是key对象的hashCode()方法的返回值,还会经过扰动函数的扰动,以使hash值更加均衡。
因为hashCode()是int类型,取值范围是40多亿,只要哈希函数映射的比较均匀松散,碰撞几率是很小的。
但就算原本的hashCode()取得很好,每个key的hashCode()不同,但是由于HashMap的哈希桶的长度远比hash取值范围小,默认是16,所以当对hash值以桶的长度取余,以找到存放该key的桶的下标时,由于取余是通过与操作完成的,会忽略hash值的高位。因此只有hashCode()的低位参加运算,发生不同的hash值,但是得到的index相同的情况的几率会大大增加,这种情况称之为hash碰撞。 即,碰撞率会增大。
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
扰动函数hash(Object key)就是为了解决hash碰撞的。它会综合hash值高位和低位的特征,并存放在低位,因此在与运算时,相当于高低位一起参与了运算,以减少hash碰撞的概率。(在JDK8之前,扰动函数会扰动四次,JDK8简化了这个操作)
HashMap的扩容
扩容操作时,会new一个新的Node数组作为哈希桶,然后将原哈希表中的所有数据(Node节点)移动到新的哈希桶中,相当于对原哈希表中所有的数据重新做了一个put操作。所以性能消耗很大,可想而知,在哈希表的容量越大时,性能消耗越明显。
扩容时,如果发生过哈希碰撞,节点数小于8个,则要根据链表上每个节点的哈希值,依次放入新哈希桶对应下标位置。因为扩容是容量翻倍,所以原链表上的每个节点,现在可能存放在原来的下标,即low位, 或者扩容后的下标,即high位。 high位= low位+原哈希桶容量如果追加节点后,链表数量>=8,则转化为红黑树。
特别地:
扩容在多线程的情况下,调整大小会存在条件竞争,容易造成死锁。
至于当链表存储大于阀值(8个),将链表存储转换成红黑树存储呢,接下来看第2点的put方法
put方法
put方法:主要分析请看代码注释
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
//“扰动函数”,使hash值更加均衡,减少碰撞
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
// 第三个参数 onlyIfAbsent 如果是 true,那么只有在不存在该 key 时才会进行 put 操作
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
//tab存放 当前的哈希桶, p用作临时链表节点
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果当前哈希表是空的,代表是初始化
if ((tab = table) == null || (n = tab.length) == 0)
//那么直接去扩容哈希表,并且将扩容后的哈希桶长度赋值给n
n = (tab = resize()).length;
//如果当前index的节点是空的,表示没有发生哈希碰撞。 直接构建一个新节点Node,挂载在index处即可。
//这里再啰嗦一下,index 是利用 哈希值 & 哈希桶的长度-1,替代模运算
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {//否则 发生了哈希冲突。
//e
Node<K,V> e; K k;
//如果哈希值相等,key也相等,则是覆盖value操作
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;//将当前节点引用赋值给e
else if (p instanceof TreeNode)//红黑树暂且不谈
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {//不是覆盖操作,则插入一个普通链表节点
//遍历链表
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {//遍历到尾部,追加新节点到尾部
p.next = newNode(hash, key, value, null);
//如果追加节点后,链表数量》=8,则转化为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//如果找到了要覆盖的节点
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果e不是null,说明有需要覆盖的节点,
if (e != null) { // existing mapping for key
//则覆盖节点值,并返回原oldValue
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
//这是一个空实现的函数,用作LinkedHashMap重写使用。
afterNodeAccess(e);
return oldValue;
}
}
//如果执行到了这里,说明插入了一个新的节点,所以会修改modCount,以及返回null。
//修改modCount
++modCount;
//更新size,并判断是否需要扩容。
if (++size > threshold)
resize();
//这是一个空实现的函数,用作LinkedHashMap重写使用。
afterNodeInsertion(evict);
return null;
}
final Node<K,V>[] resize() {
//oldTab 为当前表的哈希桶
Node<K,V>[] oldTab = table;
//当前哈希桶的容量 length
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//当前的阈值
int oldThr = threshold;
//初始化新的容量和阈值为0
int newCap, newThr = 0;
//如果当前容量大于0
if (oldCap > 0) {
//如果当前容量已经到达上限
if (oldCap >= MAXIMUM_CAPACITY) {
//则设置阈值是2的31次方-1
threshold = Integer.MAX_VALUE;
//同时返回当前的哈希桶,不再扩容
return oldTab;
}//否则新的容量为旧的容量的两倍。
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)//如果旧的容量大于等于默认初始容量16
//那么新的阈值也等于旧的阈值的两倍
newThr = oldThr << 1; // double threshold
}//如果当前表是空的,但是有阈值。代表是初始化时指定了容量、阈值的情况
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;//那么新表的容量就等于旧的阈值
else {}//如果当前表是空的,而且也没有阈值。代表是初始化时没有任何容量/阈值参数的情况 // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;//此时新表的容量为默认的容量 16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//新的阈值为默认容量16 * 默认加载因子0.75f = 12
}
if (newThr == 0) {//如果新的阈值是0,对应的是 当前表是空的,但是有阈值的情况
float ft = (float)newCap * loadFactor;//根据新表容量 和 加载因子 求出新的阈值
//进行越界修复
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//更新阈值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//根据新的容量 构建新的哈希桶
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
//更新哈希桶引用
table = newTab;
//如果以前的哈希桶中有元素
//下面开始将当前哈希桶中的所有节点转移到新的哈希桶中
if (oldTab != null) {
//遍历老的哈希桶
for (int j = 0; j < oldCap; ++j) {
//取出当前的节点 e
Node<K,V> e;
//如果当前桶中有元素,则将链表赋值给e
if ((e = oldTab[j]) != null) {
//将原哈希桶置空以便GC
oldTab[j] = null;
//如果当前链表中就一个元素,(没有发生哈希碰撞)
if (e.next == null)
//直接将这个元素放置在新的哈希桶里。
//注意这里取下标 是用 哈希值 与 桶的长度-1 。 由于桶的长度是2的n次方,这么做其实是等于 一个模运算。但是效率更高
newTab[e.hash & (newCap - 1)] = e;
//如果发生过哈希碰撞 ,而且是节点数超过8个,转化成了红黑树(暂且不谈 避免过于复杂, 后续专门研究一下红黑树)
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//如果发生过哈希碰撞,节点数小于8个。则要根据链表上每个节点的哈希值,依次放入新哈希桶对应下标位置。
else { // preserve order
//因为扩容是容量翻倍,所以原链表上的每个节点,现在可能存放在原来的下标,即low位, 或者扩容后的下标,即high位。 high位= low位+原哈希桶容量
//低位链表的头结点、尾节点
Node<K,V> loHead = null, loTail = null;
//高位链表的头节点、尾节点
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;//临时节点 存放e的下一个节点
do {
next = e.next;
//这里又是一个利用位运算 代替常规运算的高效点: 利用哈希值 与 旧的容量,可以得到哈希值去模后,是大于等于oldCap还是小于oldCap,等于0代表小于oldCap,应该存放在低位,否则存放在高位
if ((e.hash & oldCap) == 0) {
//给头尾节点指针赋值
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}//高位也是相同的逻辑
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}//循环直到链表结束
} while ((e = next) != null);
//将低位链表存放在原index处,
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//将高位链表存放在新index处
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
put的主要流程总结:
1.如果HashMap从被初始化,则初始化
2.对Key求Hash值(这里使用的hash(Object key)扰动函数减少碰撞),然后计算下标
3.如果没有碰撞,直接放入桶(数组)中
4.如果碰撞了,以链表的方式链接到后面
5.如果链表长度超过阈值8,就把链表转为红黑树
6.如果链表长度低于6就把红黑树转回链表
7.如果节点已经存在就替换旧值
8.如果桶满了(容量16*加载因子0.75),就需要resize(扩容2倍后重排)
get方法
以key为条件,找到返回value。没找到返回null
public V get(Object key) {
Node<K,V> e;
//传入扰动后的哈希值 和 key 找到目标节点Node
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
//传入扰动后的哈希值 和 key 找到目标节点Node
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//查找过程和删除基本差不多, 找到返回节点,否则返回null
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
总结
暂时学习到这里,如果还有什么遗漏可以留言给我哈。
参考文章
https://www.cnblogs.com/Benjious/p/10441839.html
https://juejin.im/post/599652796fb9a0249975a318
https://zhuanlan.zhihu.com/p/21673805
https://blog.csdn.net/Fyf_010316/article/details/87621016
最后
如果对 Java、大数据感兴趣请长按二维码关注一波,我会努力带给你们价值。觉得对你哪怕有一丁点帮助的请帮忙点个赞或者转发哦。
关注公众号【爱编码】,小编会一直更新文章的哦。
网友评论