六、其他
必背公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
七、有关代数
列方程解应用题
1、 列方程解应用题的意义
用方程式去解答应用题求得应用题的未知量的方法。
2 、列方程解答应用题的步骤
弄清题意,确定未知数并用x表示;找出题中的数量之间的相等关系;列方程,解方程;检查或验算,写出答案。
3、列方程解应用题的方法
综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。
分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
八、几何基础
一、 线和角
1、线
(1)直线
直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
(2)射线
射线只有一个端点;长度无限。
(3)线段
线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
(4)平行线
在同一平面内,不相交的两条直线叫做平行线。两条平行线之间的垂线长度都相等。
(5)垂线
两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
2、角
(1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。
(2)角的分类
锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。
周角:角的一边旋转一周,与另一边重合。周角是360°。
二 、平面图形
1、长方形
(1)特征
对边相等,4个角都是直角的四边形。有两条对称轴。
(2)计算公式
c=2(a+b)
s=ab
2、正方形
(1)特征:
四条边都相等,四个角都是直角的四边形。有4条对称轴。
(2)计算公式
c=4a
s=a2
3、三角形
(1)特征
由三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条高。
(2)计算公式
s=ah/2
(3) 分类
①按角分
锐角三角形 :三个角都是锐角。
直角三角形 :有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
②按边分
不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形
(1) 特征
两组对边分别平行的四边形。相对的边平行且相等。对角相等,相邻的两个角的度数之和为180度。平行四边形容易变形。
(2) 计算公式
s=ah
5、 梯形
(1)特征
只有一组对边平行的四边形。中位线等于上下底和的一半。等腰梯形有一条对称轴。
(2) 公式
s=(a+b)h/2=mh
6 、圆
(1) 圆的认识
平面上的一种曲线图形。圆中心的一点叫做圆心。一般用字母o表示。半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示.在同一个圆里,有无数条半径,每条半径的长度都相等。通过圆心并且两端都在圆上的线段叫做直径。一般用d表示。同一个圆里有无数条直径,所有的直径都相等。同一个圆里,直径等于两个半径的长度,即d=2r。圆的大小由半径决定。 圆有无数条对称轴。
(2)圆的画法
把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3) 圆的周长
围成圆的曲线的长叫做圆的周长。把圆的周长和直径的比值叫做圆周率。用字母∏表示。
(4) 圆的面积
圆所占平面的大小叫做圆的面积。
(5)计算公式
d=2r
r=d/2
c=πd
c=2πr
s=πr2
7、扇形
扇形的认识,一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。圆上AB两点之间的部分叫做弧,读作“弧AB”。顶点在圆心的角叫做圆心角。在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。扇形有一条对称轴。
三 、立体图形
1、长方体
(1)特征
六个面都是长方形(有时有两个相对的面是正方形)。相对的面面积相等,12条棱相对的4条棱长度相等。有8个顶点。相交于一个顶点的三条棱的长度分别叫做长、宽、高。两个面相交的边叫做棱。三条棱相交的点叫做顶点。把长方体放在桌面上,最多只能看到三个面。长方体或者正方体6个面的总面积,叫做它的表面积。
2 计算公式
s=2(ab+ah+bh)
V=sh
V=abh
2、正方体
(1)特征
六个面都是正方形,六个面的面积相等,12条棱,棱长都相等,有8个顶点,正方体可以看作特殊的长方体。
2 计算公式
S表=6a2
v=a3
3、圆柱
(1)圆柱的认识
圆柱的上下两个面叫做底面。圆柱有一个曲面叫做侧面。圆柱两个底面之间的距离叫做高 。
进一法:实际中,使用的材料都要比计算的结果多一些 ,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
(2)计算公式
s侧=ch
s表=s侧+s底×2
v=sh/3
4、圆锥
(1) 圆锥的认识
圆锥的底面是个圆,圆锥的侧面是个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。把圆锥的侧面展开得到一个扇形。
(2)计算公式
v= sh/3
5、球
(1)认识
球的表面是一个曲面,这个曲面叫做球面。球和圆类似,也有一个球心,用O表示。从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。通过球心并且两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r。
更多教育相关资讯请点击小书灯家长社区
网友评论