美文网首页
字节跳动的三道编码面试题的实现

字节跳动的三道编码面试题的实现

作者: 是阿胖胖吖 | 来源:发表于2020-08-26 20:54 被阅读0次

    国庆节后,自己的一个小圈子微信群的伙伴们发了一张图片,是网上流传的字节跳动的面试题编码,闲的无事就思索了下,发现都不难,都是对基础的数学知识的考量。先上图吧!

    当然40分钟,我也无法把任意两题编码完成,只是知道大概的解题思路,唯一能确定的,在面试规定时间内,第二题我是肯定可以在20分钟内编码完成。

    题目一

    基础知识就是初中的平面直角坐标系,解析思路:

    计算总周长;

    将各边长的前后坐标计算出来封装好,第四步要使用;

    根据K段值计算出平均分段后的长度;

    然后循环K次,根据平均长度依次相加计算等分点的坐标。

    不多说,上代码:

    先定义坐标的Point类

    class Point {

    float x;

    float y;

    public Point() {

    }

    public Point(float x, float y) {

    this.x = x;

    this.y = y;

    }

    public Point(Point point) {

    this(point.x, point.y);

    }

    @Override

    public String toString() {

    return "Point, x:" + x + " y:" + y;

    }

    }

    N边形的边封装类

    class Line {

    Point begin;

    Point end;

    float length;

    public Line() {

    }

    public Line(Point begin, Point end, float length) {

    this.begin = begin;

    this.end = end;

    this.length = length;

    }

    }

    现在上实现计算的类

    这段代码第一个版本的时候,在正方形偶数等分的时候,坐标点计算不准确,今晚上看着代码思考了10分钟的样子,稍微改动了下,暂时没有这个bug了。其他的bug,期待大家一起发现,然后修复吧!

    public class Polygon {

    /**

    * 计算边的长度

    *

    * @return

    */

    private static float lineLength(Point a, Point b) {

    float length;

    if (a.x == b.x) {

    // 垂直线条

    length = Math.abs(a.y - b.y);

    } else {

    length = Math.abs(a.x - b.x);

    }

    return length;

    }

    /**

    * 计算 周长

    *

    * @return

    */

    private static float totalSideLength(Point[] points, Line[] lines) {

    float side = 0;

    for (int i = 1; i < points.length; i++) {

    Point prev = points[i - 1];

    Point point = points[i];

    float length = lineLength(prev, point);

    side += length;

    lines[i - 1] = new Line(prev, point, length);

    if (i == points.length - 1) {

    length = lineLength(point, points[0]);

    side += length;

    lines[i] = new Line(point, points[0], length);

    }

    }

    return side;

    }

    public static Point[] division(Point[] points, int divisionNum) {

    Point[] divisionPoint = new Point[divisionNum];

    // 计算周长

    Line[] lines = new Line[points.length];

    float side = totalSideLength(points, lines);

    // 等分长度

    float divisionLength = side / divisionNum;

    int lineIndex = -1;

    float sumLength = 0;

    for (int i = 0; i < divisionNum; i++) {

    if (i == 0) {

    // 第一个等分点直接是起始点坐标

    divisionPoint[i] = new Point(points[0]);

    continue;

    }

    divisionPoint[i] = new Point();

    float lineLength = divisionLength * i;

    while (true) {

    Line line;

    if (sumLength < lineLength) {

    lineIndex++;

    line = lines[lineIndex];

    sumLength += line.length;

    } else

    line = lines[lineIndex];

    if (sumLength >= lineLength) {

    float temp = sumLength - lineLength;

    if (line.begin.x == line.end.x) {

    // begin和end的坐标点垂直

    divisionPoint[i].x = line.begin.x;

    if (line.end.y > line.begin.y)

    divisionPoint[i].y = line.end.y - temp;

    else

    divisionPoint[i].y = line.end.y + temp;

    } else {

    // begin和end的坐标点水平

    divisionPoint[i].y = line.end.y;

    if (line.end.x > line.begin.x)

    divisionPoint[i].x = line.end.x - temp;

    else

    divisionPoint[i].x = line.end.x + temp;

    }

    break;

    }

    }

    }

    return divisionPoint;

    }

    private static void print(Point[] points) {

    for (int i = 0; i < points.length; i++) {

    System.out.println("第" + (i + 1) + "等分点, x:" + points[i].x + ",y:" + points[i].y);

    }

    }

    public static void main(String[] args) {

    Point[] points = new Point[] { new Point(0, 0), new Point(0, 1), new Point(1, 1), new Point(1, 0) };

    Point[] divPoints = division(points, 8);

    print(divPoints);

    }

    }

    题目二

    解题思路:

    对应位数的数字相加,永远不会超过18,所以,我们就先把对应位置的和计算出来,然后再反复循环找到大于9的数,向高位进位。

    这个比较简单,只是考察个位数的正整数加法永远不大于18这个细节。

    上代码:

    public class LinkAddition {

    static class NumNode {

    public int num;

    public NumNode next;

    public NumNode() {

    }

    public NumNode(int num) {

    this.num = num;

    };

    public NumNode(int num, NumNode next) {

    this(num);

    this.next = next;

    }

    }

    private static int length(NumNode num) {

    int length = 0;

    NumNode temp = num;

    while (temp != null) {

    length++;

    temp = temp.next;

    }

    return length;

    }

    private static NumNode calc(NumNode a, NumNode b, int aLength, int bLength) {

    NumNode aNode = a;

    NumNode bNode = b;

    NumNode result = new NumNode();

    NumNode resultNode = result;

    // 计算b链表再a中的起始索引

    int aStartIndex = aLength - bLength;

    for (int i = 0; i < aLength; i++) {

    if (i >= aStartIndex) {

    resultNode.num = aNode.num + bNode.num;

    bNode = bNode.next;

    } else

    resultNode.num = aNode.num;

    aNode = aNode.next;

    if (aNode != null) {

    resultNode.next = new NumNode();

    resultNode = resultNode.next;

    }

    }

    return result;

    }

    public static NumNode addition(NumNode a, NumNode b) {

    NumNode result = null;

    // 计算位数

    int aLength = length(a);

    int bLength = length(b);

    if (aLength > bLength) {

    result = calc(a, b, aLength, bLength);

    } else {

    result = calc(b, a, bLength, aLength);

    }

    boolean isGreater9 = true;

    while (isGreater9) {

    isGreater9 = false;

    NumNode node = result;

    while (node != null) {

    // 检查是否有大于9的节点

    if (node.num > 9) {

    isGreater9 = true;

    break;

    }

    node = node.next;

    }

    // 没有大于9且需要进位的节点

    if (!isGreater9)

    break;

    node = result;

    if (node.num > 9) {

    // 头节点的内容跟大于9,需要进位

    result = new NumNode(1, node);

    node.num = node.num - 10;

    }

    while (node.next != null) {

    if (node.next.num > 9) {

    node.num += 1;

    node.next.num = node.next.num - 10;

    }

    node = node.next;

    }

    }

    return result;

    }

    private static void print(NumNode num) {

    NumNode node = num;

    while (node != null) {

    System.out.print(node.num);

    node = node.next;

    }

    }

    public static void main(String[] args) {

    NumNode a = new NumNode(9);

    a.next = new NumNode(9, new NumNode(9));

    NumNode b = new NumNode(9);

    // b.next = new NumNode(9, new NumNode(9));

    NumNode result = addition(a, b);

    print(result);

    }

    }

    题目三

    这个我写的第一个版本,只契合类那个举例,然后瞬间就被我推翻类,最后坐下思考类10分钟,把这个按照二维数组的思路解析了。

    先找到最高处,然后就以最高处为一个维度,做循环计算出水量,还是上代码吧:

    public class Water {

    public static int waterNum(int[] steps) {

    int waterNum = 0;

    int max = steps[0];

    for (int i = 1; i < steps.length; i++) {

    if (max < steps[i])

    max = steps[i];

    }

    for (int i = 0; i < max; i++) {

    int num = 0, index = 0;

    for (int n = 0; n < steps.length; n++) {

    if (steps[n] - i > 0) {

    if (num > 0) {

    waterNum += n - index - 1;

    }

    num = steps[n] - i;

    index = n;

    }

    }

    }

    return waterNum;

    }

    public static void main(String[] args) {

    int[] steps = new int[] { 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 3, 0, 1 };

    int water = waterNum(steps);

    System.out.println(water);

    }

    }

    总结:

    其实这几题本身的知识点并不难,都是平时用到的,就看怎么转化为代码罢了。

    第一题考察的直角坐标系上怎么计算边长,然后根据均分等长从第一条边挨着走,计算对应的坐标,该知识点在初中就已学过。

    第二题则是考察每位上的正整数加法到底最大能到多少,只要明白了这一点,把每一位上相加后,再统一做进位处理就可以了。

    第三题的代码量是最少的,我的解题思路是二位数组的方式, 也不算难。

    专注Java技术分享,交流V:yuandengta522 (备注来源)可相互交换海量Java技术资料

    相关文章

      网友评论

          本文标题:字节跳动的三道编码面试题的实现

          本文链接:https://www.haomeiwen.com/subject/bigfsktx.html