美文网首页奥数自学研究
高中奥数 2022-04-02

高中奥数 2022-04-02

作者: 不为竞赛学奥数 | 来源:发表于2022-04-02 15:05 被阅读0次

构造辅助命题

如果一个命题直接证比较困难,可以试着考虑建立辅助命题来帮助证题.

2022-04-02-01

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P079 例15)

给定两组数x_{1},x_{2},\cdots ,x_{n}y_{1},y_{2},\cdots ,y_{n},现知x_{1}>x_{2}>\cdots >x_{n}>0,
y_{1}>y_{2}>\cdots >y_{n}>0,
x_{1}>y_{1},
x_{1}+x_{2}>y_{1}-y_{2},
x_{1}+x_{2}+\cdots +x_{n}>y_{1}+y_{2}+\cdots +y_{n}.
求证:对于任何自然数k,都有
x_{1}^{k}+x_{2}^{k}+\cdots +x_{n}^{k}>y_{1}^{k}+y_{2}^{0}+\cdots +y_{n}^{k}.
分析我们猜想是否有如下的递推关系:
x_{1}^{k}+x_{2}^{k}+\cdots +x_{n}^{k}>x_{1}^{k-1}y_{1}+x_{2}^{k-1}y_{2}+\cdots +x_{n}^{k-1}y_{n},
x_{1}^{k-1}y_{1}+x_{2}^{k-1}y_{2}+\cdots +x_{n}^{k-1}y_{n}>x_{1}^{k-2}y_{1}^{2}+x_{2}^{k-2}y_2^{2}+\cdots +x_{n}^{k-2}y_{n}^{2},
x_{1}y_{1}^{k-1}+x_{2}y_{2}^{k-1}+\cdots +x_{n}y_{n}^{k-1}>y_{1}^{k}+y_{2}^{k}+\cdots +y_{n}^{k}.
从而联想到构造辅助命题:
a_{1}>a_{2}>\cdots >a_{n}>0,且满足题设的条件,那么:
a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}>a_{1}y_{1}+a_{2}y_{2}+\cdots +a_{n}y_{n}.\qquad(*)
证明

因为a_{1}>a_{2}>L>a_{n}>0,故存在正数b_{1},b_{2},\cdots b_{n-1},b_{n}使得:
a_{n}= b_{1},
a_{n-1}=b_{1}+b_{2},
\cdots\cdots\cdots\cdots\cdots\cdots
a_{2}=b_{1}+b_{2}+\cdots +b_{n-1},
a_{1}=b_{1}+b_{2}+\cdots +b_{n}.
于是
\begin{aligned} &a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}\\ =&\left(b_{1}+b_{2}+\cdots +b_{n}\right)x_{1}+\left(b_{1}+b_{2}+\cdots +b_{n-1}\right)x_{2}+\cdots +b_{1}x_{n}\\ =&b_{1}\left(x_{1}+x_{2}+\cdots +x_{n}\right)+b_{2}\left(x_{1}+x_{2}+\cdots +x_{n-1}\right)+\cdots +b_{n}x_{1}\\ >&b_{1}\left(y_{1}+y_{2}+\cdots +y_{n}\right)+b_{2}\left(y_{1}+y_{2}+\cdots +y_{n-1}\right)+\cdots +b_{n}y_{1}\\ =&\left(b_{1}+b_{2}+\cdots +b_{n}\right)y_{1}+\left(b_{1}+b_{2}+\cdots +b_{n-1}\right)y_{2}+\cdots +b_{1}y_{n}\\ =&a_{1}y_{1}+a_{2}y_{2}+\cdots +a_{n}y_{n}, \end{aligned}
(*)式成立再依次取a_{i}=x_{i}^{k-1},x^{k-2}y_{i},\cdots ,y_{i}^{k-1}\left(i=1,2,\cdots ,n\right),利用不等式的传递性,自大到小逐渐缩小,即得所要证的不等式.

相关文章

  • 高中奥数 2022-04-02

    构造辅助命题 如果一个命题直接证比较困难,可以试着考虑建立辅助命题来帮助证题. 2022-04-02-01 (来源...

  • 奥数!奥数!

    儿子马上要上四年级了,“奥数,学,还是不学?”这个问我要做个了断,因为大多数孩子一上小学三年级就开始在校外报班学习...

  • 高中奥数 2022-03-16

    2022-03-16-01 (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明...

  • 高中奥数 2022-03-14

    2022-03-14-01 (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明...

  • 高中奥数 2022-02-17

    2022-02-17-01 (来源: 数学奥林匹克小丛书 第二版 高中卷 数列与数学归纳法 冯志刚 习题二 P09...

  • 高中奥数 2022-02-24

    \subsection{放缩法} 有时我们直接证明不等式比较困难,可以试着去找一个中间量,如果有及同时成立,自然就...

  • 高中奥数 2022-02-25

    \subsection{分析法} 所谓分析法就是先假定要证的不等式成立,然后由它出发推出一系列与之等价的不等式(即...

  • 高中奥数 2022-03-11

    2022-03-11-01 (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明...

  • 高中奥数 2022-03-10

    2022-03-10-01 (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明...

  • 高中奥数 2022-03-13

    变量代换是数学中常用的解题方法之一,将一个较复杂的式子视为一个整体,用一个字母去代换它,从而使复杂问题简单化.有时...

网友评论

    本文标题:高中奥数 2022-04-02

    本文链接:https://www.haomeiwen.com/subject/bkvtsrtx.html