美文网首页
2024-03-01 OpenCV QT 常用计算

2024-03-01 OpenCV QT 常用计算

作者: 颈椎以上瘫痪 | 来源:发表于2024-03-03 08:32 被阅读0次

OpenCV QT

计算点到点之间的距离

/**
 * 计算点到点之间的距离
 * @brief caleDistance
 * @param pt1
 * @param pt2
 * @return
 */
static float calePoint2PointDistance(cv::Point2f pt1, cv::Point2f pt2);

float U::calePoint2PointDistance(cv::Point2f pt1, cv::Point2f pt2)
{
    float distance = pow((pt1.x - pt2.x), 2) + pow((pt1.y - pt2.y), 2);
    distance = sqrt(distance);
    return distance;
}

计算点到直线之间的最短距离

/**
 * 计算点到直线之间的最短距离
 * @brief calePoint2LineDistance
 * @param pt
 * @param line
 * @return
 */
static float calePoint2LineDistance(cv::Point2f pt, cv::Vec4f line);

float U::calePoint2LineDistance(cv::Point2f pt, cv::Vec4f line)
{
    float a = line[1] - line[3];
    float b = line[2] - line[0];
    float c = line[0] *  line[3] - line[1] * line[2];
    float distance  = (abs(a * pt.x + c * pt.y + c)) / (sqrt(a * a + b * b));
    return distance;
}

直线拟合

多个点拟合一条最优直线

/**
 * 直线拟合
 * @brief fitLine
 * @param points
 * @return
 */
static cv::Vec4f fitLine(std::vector<cv::Point2f> points);

cv::Vec4f U::fitLine(std::vector<cv::Point2f> points)
{
    cv::Vec4f line;
    cv::fitLine(points, line, cv::DIST_L2, 0, 0.01, 0.01);
    return line;
}

图像中指定区域填充指定颜色

/**
 * 图像中指定区域填充指定颜色
 * @brief fillRect
 * @param src
 * @param color
 * @param xStart
 * @param xEnd
 * @param yStart
 * @param yEnd
 * @return
 */
static cv::Mat fillRect(cv::Mat src, cv::Vec3b color, int xStart, int xEnd, int yStart, int yEnd);

cv::Mat U::fillRect(cv::Mat src, cv::Vec3b color, int xStart, int xEnd, int yStart, int yEnd)
{
    for (int i = xStart; i < xEnd; ++i)
    {
        for (int j = yStart; j < yEnd; ++j)
        {
            src.at<cv::Vec3b>(j, i) = color;
        }
    }
    return src;
}

排序矩形4点顺序

轮廓处理可以拿到外切矩形,矩形4个点是无序的,有时候会需要使用到点坐标,但是无法定位到具体的点,在这里可以进行排序,然后取对应的点

/**
 * 排序矩形4点顺序
 * @brief sortRecpPoint
 * @param points
 * @return 左上,右上,右下,左下
 */
static std::vector<cv::Point2f> sortRecpPoint(std::vector<cv::Point2f> points);

std::vector<cv::Point2f> U::sortRecpPoint(std::vector<cv::Point2f> points)
{
    //点按照x坐标从小到大排序
    QList<cv::Point2f> temp;
    for (int i = 0; i < points.size() ; i++)
    {
        int insertIndex = -1;
        for (int j = 0; j < temp.size(); j++)
        {
            if (points[i].x < temp[j].x)
            {
                insertIndex = j;
                continue;
            }
        }
        if (insertIndex > 0)
        {
            temp.insert(insertIndex, cv::Point2f(points[i].x, points[i].y));
        }
        else
        {
            temp.append(cv::Point2f(points[i].x, points[i].y));
        }
    }
    //根据x坐标,判断y坐标大小,确定点的位置
    cv::Point2f tl;
    cv::Point2f tr;
    cv::Point2f bl;
    cv::Point2f br;
    if (temp[0].y < temp[1].y)
    {
        tl.x = temp[0].x;
        tl.y = temp[0].y;
        bl.x = temp[1].x;
        bl.y = temp[1].y;
    }
    else
    {
        tl.x = temp[1].x;
        tl.y = temp[1].y;
        bl.x = temp[0].x;
        bl.y = temp[0].y;
    }
    if (temp[2].y < temp[3].y)
    {
        tr.x = temp[2].x;
        tr.y = temp[2].y;
        br.x = temp[3].x;
        br.y = temp[3].y;
    }
    else
    {
        tr.x = temp[3].x;
        tr.y = temp[3].y;
        br.x = temp[2].x;
        br.y = temp[2].y;
    }
    //根据左上,右上,右下,左下顺序排序
    std::vector<cv::Point2f> result;
    result.push_back(tl);
    result.push_back(tr);
    result.push_back(br);
    result.push_back(bl);
    return result;
}

判断2条直线是否相交

2条直线是否相交,如果相交返回交点坐标

/**
 * 判断2条直线是否相交
 * 相交:交点
 * @brief calcLine2LineIntersect
 * @param line1Start
 * @param line1End
 * @param line2Start
 * @param line2End
 * @return
 * Vec3d[0]=intersect?
 * Vec3d[1]=intersectX
 * Vec3d[2]=intersectY
 */
static cv::Vec3f calcLine2LineIntersect(cv::Point2f line1Start, cv::Point2f line1End, cv::Point2f line2Start, cv::Point2f line2End);

cv::Vec3f U::calcLine2LineIntersect(cv::Point2f line1Start, cv::Point2f line1End, cv::Point2f line2Start, cv::Point2f line2End)
{
    cv::Vec4f l1(line1Start.x, line1Start.y, line1End.x, line1End.y);
    cv::Vec4f l2(line2Start.x, line2Start.y, line2End.x, line2End.y);
    float x1 = l1[0];
    float y1 = l1[1];
    float x2 = l1[2];
    float y2 = l1[3];
    float a1 = -(y2 - y1);
    float b1 = x2 - x1;
    float c1 = (y2 - y1) * x1 - (x2 - x1) * y1;
    float x3 = l2[0];
    float y3 = l2[1];
    float x4 = l2[2];
    float y4 = l2[3];
    float a2 = -(y4 - y3);
    float b2 = x4 - x3;
    float c2 = (y4 - y3) * x3 - (x4 - x3) * y3;
    // 判断结果
    bool r = false;
    float x0 = 0;
    float y0 = 0;
    // 判断相交
    // l1垂直于x轴,l2倾斜于x轴
    if (b1 == 0 && b2 != 0)
    {
        r = true;
    }
    // l1倾斜于x轴,l2垂直于x轴
    else if ((b1 != 0) && b2 == 0)
    {
        r = true;
    }
    else if (b1 != 0 && b2 != 0 && a1 / b1 != a2 / b2)
    {
        r = true;
    }
    if (r)
    {
        //计算交点
        x0 = (b1 * c2 - b2 * c1) / (a1 * b2 - a2 * b1);
        y0 = (a1 * c2 - a2 * c1) / (a2 * b1 - a1 * b2);
    }
    return cv::Vec3f(r, x0, y0);
}

计算三角形的夹角

一直三角形3个顶点坐标,求每个顶点对应角度

/**
 * 计算三角形的夹角
 * @brief caleTrigonAngle
 * @param p1
 * @param p2
 * @param p3
 * @return 顺序为传入点的顺序
 */
static cv::Vec3f caleTrigonAngle(cv::Point2f p1, cv::Point2f p2, cv::Point2f p3);

cv::Vec3f U::caleTrigonAngle(cv::Point2f p1, cv::Point2f p2, cv::Point2f p3)
{
    float a = sqrt((p2.x - p3.x) * (p2.x - p3.x) + (p2.y - p3.y) * (p2.y - p3.y));
    float b = sqrt((p1.x - p3.x) * (p1.x - p3.x) + (p1.y - p3.y) * (p1.y - p3.y));
    float c = sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
    float A = (acos((a * a - b * b - c * c) / (-2 * b * c))) * 180 / M_PI;
    float B = (acos((b * b - a * a - c * c) / (-2 * a * c))) * 180 / M_PI;
    float C = (acos((c * c - a * a - b * b) / (-2 * a * b))) * 180 / M_PI;
    return cv::Vec3f(A, B, C);
}

统计图像中黑白像素点数量

/**
 * 统计图像中黑白像素点数量
 * @brief pixelCounter
 * @param mat 二值图像
 * @return
 * Vec3i[0]=b
 * Vec3i[1]=w
 * Vec3i[2]=o(其它)
 */
static cv::Vec3i pixelCounter(cv::Mat src);

cv::Vec3i U::pixelCounter(cv::Mat src)
{
    int countBlack = 0;
    int countWhite = 0;
    int countOther = 0;
    //通过迭代器访问图像的像素点
    cv::Mat_<uchar>::iterator itor = src.begin<uchar>();
    cv::Mat_<uchar>::iterator itorEnd = src.end<uchar>();
    for (; itor != itorEnd; ++itor)
    {
        if ((*itor) == 255)
        {
            //白:像素值 ptr=255
            countWhite++;
        }
        else if ((*itor) == 0)
        {
            //黑:像素值 ptr=0
            countBlack++;
        }
        else
        {
            countOther++;
        }
    }
    return cv::Vec3i(countBlack, countWhite, countOther);
}

获取图像中指定区域

根据矩形裁剪图像中的一部分

/**
 * 获取图像中指定区域
 * @brief roi
 * @param src
 * @param tl 左上角
 * @param w 宽
 * @param h 高
 * @return
 */
static cv::Mat roi(cv::Mat src, cv::Point2f tl, float w, float h);

cv::Mat U::roi(cv::Mat src, cv::Point2f tl, float w, float h)
{
    cv::Rect2f roiRect(tl.x, tl.y, w, h);
    cv::Mat roi = src(roiRect);
    return roi;
}

cv::Mat转QImage

cv::Mat对象转为QImage对象

/**
 * OpenCV Mat图像转QImage
 * @brief Mat2QImage
 * @param src
 * @return
 */
QImage Mat2QImage(cv::Mat mat);

QImage U::Mat2QImage(cv::Mat mat)
{
    const unsigned char* data = mat.data;
    int width = mat.cols;
    int height = mat.rows;
    int bytesPerLine = static_cast<int>(mat.step);
    switch (mat.type())
    {
        //ARGB
        case CV_8UC4:
        {
            QImage image(data, width, height, bytesPerLine, QImage::Format_ARGB32);
            return image;
        }
        //BGR
        case CV_8UC3:
        {
            QImage image(data, width, height, bytesPerLine, QImage::Format_RGB888);
            return image.rgbSwapped();
        }
        //Gray shale
        case CV_8UC1:
        {
            QImage image(data, width, height, bytesPerLine, QImage::Format_Grayscale8);
            return image;
        }
        //Unsupported format
        default:
        {
            qDebug() << "Unsupported cv::Mat type:" << mat.type() << ", Empty QImage will be returned!";
            return QImage();
        }
    }
}

图像旋转

图像旋转OpenCV有仿射变换的旋转操作,但是结果不是我们想要的,往往我们需要的旋转是保留图像所有数据,因此这个函数的结果是不同的。具体描述请参考另一篇专门介绍旋转操作:OpenCV QT 图像旋转后点还原到原图坐标

/**
 * 图像旋转
 * @brief rotate
 * @param src
 * @param angle
 * @return
 */
static cv::Mat rotate(cv::Mat src,  float angle);

cv::Mat U::rotate(cv::Mat src,  float angle)
{
    //旋转默认正角度是逆时针,与我的常用操作相反,所以我在这里取反,不是必要操作
    angle = -angle;
    double scale = 1.0;
    //原图中心点
    cv::Point2f center(src.size().width / 2.0f, src.size().height / 2.0f);
    //定义旋转矩阵
    cv::Mat rot = cv::getRotationMatrix2D(center, angle, scale);
    //计算旋转后图像最大外切矩形
    cv::Rect2f bbox = cv::RotatedRect(cv::Point2f(), src.size(), angle).boundingRect2f();
    rot.at<double>(0, 2) += bbox.width / 2.0f - src.cols / 2.0f;
    rot.at<double>(1, 2) += bbox.height / 2.0f - src.rows / 2.0f;
    cv::Mat result;
    //旋转出结果
    cv::warpAffine(src, result, rot, bbox.size());
    return result;
}

点绕另一点旋转后坐标

/**
 * 一个点绕另中心点旋转一定角度后的坐标
 * @brief rotatePoint
 * @param center 中心点
 * @param rotater 旋转点
 * @param angle 角度,顺时针
 * @return
 */
static cv::Point2f rotatePoint(cv::Point2f center, cv::Point2f rotater, float angle);

cv::Point2f U::rotatePoint(cv::Point2f center, cv::Point2f rotater, float angle)
{
    //角度转弧度
    float radian = angle * CV_PI / 180;
    //三角函数计算坐标
    float x = (rotater.x - center.x) * cos(radian) - (rotater.y - center.y) * sin(radian) + center.x ;
    float y = (rotater.x - center.x) * sin(radian) + (rotater.y - center.y) * cos(radian) + center.y ;
    return cv::Point2f(x, y);
}

相关文章

网友评论

      本文标题:2024-03-01 OpenCV QT 常用计算

      本文链接:https://www.haomeiwen.com/subject/bnqqzdtx.html