Swift 泛型

作者: 深圳_你要的昵称 | 来源:发表于2021-02-11 01:12 被阅读0次

    前言

    本篇文章将分析Swift中最后一个重要的知识点 👉 泛型,首先介绍一下概念,然后讲解常用基础的语法,最后重点分析下泛型函数,主要是从IR代码层面分析下泛型函数的调用流程

    一、泛型的概念

    首先说一下泛型的概念 👇

    1. 泛型代码能根据所定义的要求写出可以用于任何类型灵活的、可复用的函数。可以编写出可复用、意图表达清晰、抽象的代码。
    2. 泛型是Swift最强大的特性之一,很多Swift标准库基于泛型代码构建的。
      例如,SwiftArrayDictionary类型都是泛型集合。可以创建一个容纳 Int 值的数组,或者容纳 String 值的数组,甚至容纳任何 Swift 可以创建的其他类型的数组。同样,可以创建一个存储任何指定类型值的字典,而且类型没有限制
    3. 泛型所解决的问题:代码的复用性和抽象能力
      比如交换两个值,这里的值可以是Int、Double、String

    例如下面的例子,其中的T就是泛型👇

    func test<T>(_ a: T, _ b: T)->Bool{
        return a == b
    }
    
    //经典例子swap,使用泛型,可以满足不同类型参数的调用
    func swap<T>(_ a: inout T, _ b: inout T){
        let tmp = a
        a = b
        b = tmp
    }
    

    二、泛型的基础语法

    接着我们来看看泛型的基础用法,主要讲3点👇

    • 类型约束
    • 关联类型
    • Where语句

    2.1 类型约束

    在一个类型参数后面放置协议或者是类,例如下面的例子,要求类型参数T遵循Equatable协议👇

    func test<T: Equatable>(_ a: T, _ b: T)->Bool{
        return a == b
    }
    

    2.2 关联类型

    在定义协议时,使用关联类型给协议中用到的类型起一个占位符名称。关联类型只能用于协议,并且是通过关键字associatedtype指定。
    首先我们来看看下面这个示例,仿写的一个的结构体👇

    struct LGStack {
        private var items = [Int]()
        
        mutating func push(_ item: Int){
            items.append(item)
        }
        
        mutating func pop() -> Int?{
            if items.isEmpty {
                return nil
            }
            return items.removeLast()
        }
    }
    

    该结构体中有个成员Item,是个数组,当前只能存储Int类型的数据,如果想使用其他类型呢?👉 可以通过协议来实现 👇

    protocol LGStackProtocol {
        //协议中使用类型的占位符
        associatedtype Item
    }
    struct LGStack: LGStackProtocol{
        //在使用时,需要指定具体的类型
        typealias Item = Int
        private var items = [Item]()
        
        mutating func push(_ item: Item){
            items.append(item)
        }
        
        mutating func pop() -> Item?{
            if items.isEmpty {
                return nil
            }
            return items.removeLast()
        }
    }
    

    此时在协议LGStackProtocol中就用到了associatedtype关键字,先让Item占个位,然后在类LGStack遵循协议后使用typealias关键字指定Item的具体类型。当然,我们这个时候也可以写一个泛型的版本👇

    struct LGStack<Element> {
        private var items = [Element]()
        
        mutating func push(_ item: Element){
            items.append(item)
        }
        
        mutating func pop() -> Element?{
            if items.isEmpty {
                return nil
            }
            return items.removeLast()
        }
    }
    

    2.3 Where语句

    where语句主要用于表明泛型需要满足的条件,即限制形式参数的要求👇

    protocol LGStackProtocol {
        //协议中使用类型的占位符
        associatedtype Item
        var itemCount: Int {get}
        mutating func pop() -> Item?
        func index(of index: Int) -> Item
    }
    struct LGStack: LGStackProtocol{
        //在使用时,需要指定具体的类型
        typealias Item = Int
        private var items = [Item]()
        
        var itemCount: Int{
            get{
                return items.count
            }
        }
    
        mutating func push(_ item: Item){
            items.append(item)
        }
    
        mutating func pop() -> Item?{
            if items.isEmpty {
                return nil
            }
            return items.removeLast()
        }
        
        func index(of index: Int) -> Item {
            return items[index]
        }
    }
    /*
     where语句
     - T1.Item == T2.Item 表示T1和T2中的类型必须相等
     - T1.Item: Equatable 表示T1的类型必须遵循Equatable协议,意味着T2也要遵循Equatable协议
     */
    func compare<T1: LGStackProtocol, T2: LGStackProtocol>(_ stack1: T1, _ stack2: T2) -> Bool where T1.Item == T2.Item, T1.Item: Equatable{
        guard stack1.itemCount == stack2.itemCount else {
            return false
        }
        
        for i in 0..<stack1.itemCount {
            if stack1.index(of: i) !=  stack2.index(of: i){
                return false
            }
        }
        return true
    }
    

    还可以这么写👇

    extension LGStackProtocol where Item: Equatable{}
    
    • 当希望泛型指定类型时拥有特定功能,可以这么写👇(在上述写法的基础上增加extension)
    extension LGStackProtocol where Item == Int{
        func test(){
            print("test")
        }
    }
    var s = LGStack()
    s.test()
    

    其中的test()就是你自定义的功能

    注意:如果将where后的Int改成Double类型,是无法找到test函数的!

    三、泛型函数

    我们在上面介绍了泛型的基本语法,接下来我们来分析下泛型的底层原理。先看示例👇

    //简单的泛型函数
    func testGenric<T>(_ value: T) -> T{
        let tmp = value
        return tmp
    }
    
    class LGTeacher {
        var age: Int = 18
        var name: String = "Kody"
    }
    
    //传入Int类型
    testGenric(10)
    //传入元组
    testGenric((10, 20))
    //传入实例对象
    testGenric(LGTeacher())
    

    从上面的代码中可以看出,泛型函数可以接受任何类型。那么问题来了👇

    泛型是如何区分不同的参数,来管理不同类型的内存呢?

    老办法,查看IR代码👇

    至此我们知道,当前泛型通过VWT来进行内存操作

    3.1 VWT

    看下VWT的源码(在Metadata.hTargetValueWitnessTable)👇

    /// A value-witness table.  A value witness table is built around
    /// the requirements of some specific type.  The information in
    /// a value-witness table is intended to be sufficient to lay out
    /// and manipulate values of an arbitrary type.
    template <typename Runtime> struct TargetValueWitnessTable {
      // For the meaning of all of these witnesses, consult the comments
      // on their associated typedefs, above.
    
    #define WANT_ONLY_REQUIRED_VALUE_WITNESSES
    #define VALUE_WITNESS(LOWER_ID, UPPER_ID) \
      typename TargetValueWitnessTypes<Runtime>::LOWER_ID LOWER_ID;
    #define FUNCTION_VALUE_WITNESS(LOWER_ID, UPPER_ID, RET, PARAMS) \
      typename TargetValueWitnessTypes<Runtime>::LOWER_ID LOWER_ID;
    
    #include "swift/ABI/ValueWitness.def"
    
      using StoredSize = typename Runtime::StoredSize;
    
      /// Is the external type layout of this type incomplete?
      bool isIncomplete() const {
        return flags.isIncomplete();
      }
    
      /// Would values of a type with the given layout requirements be
      /// allocated inline?
      static bool isValueInline(bool isBitwiseTakable, StoredSize size,
                                StoredSize alignment) {
        return (isBitwiseTakable && size <= sizeof(TargetValueBuffer<Runtime>) &&
                alignment <= alignof(TargetValueBuffer<Runtime>));
      }
    
      /// Are values of this type allocated inline?
      bool isValueInline() const {
        return flags.isInlineStorage();
      }
    
      /// Is this type POD?
      bool isPOD() const {
        return flags.isPOD();
      }
    
      /// Is this type bitwise-takable?
      bool isBitwiseTakable() const {
        return flags.isBitwiseTakable();
      }
    
      /// Return the size of this type.  Unlike in C, this has not been
      /// padded up to the alignment; that value is maintained as
      /// 'stride'.
      StoredSize getSize() const {
        return size;
      }
    
      /// Return the stride of this type.  This is the size rounded up to
      /// be a multiple of the alignment.
      StoredSize getStride() const {
        return stride;
      }
    
      /// Return the alignment required by this type, in bytes.
      StoredSize getAlignment() const {
        return flags.getAlignment();
      }
    
      /// The alignment mask of this type.  An offset may be rounded up to
      /// the required alignment by adding this mask and masking by its
      /// bit-negation.
      ///
      /// For example, if the type needs to be 8-byte aligned, the value
      /// of this witness is 0x7.
      StoredSize getAlignmentMask() const {
        return flags.getAlignmentMask();
      }
      
      /// The number of extra inhabitants, that is, bit patterns that do not form
      /// valid values of the type, in this type's binary representation.
      unsigned getNumExtraInhabitants() const {
        return extraInhabitantCount;
      }
    
      /// Assert that this value witness table is an enum value witness table
      /// and return it as such.
      ///
      /// This has an awful name because it's supposed to be internal to
      /// this file.  Code outside this file should use LLVM's cast/dyn_cast.
      /// We don't want to use those here because we need to avoid accidentally
      /// introducing ABI dependencies on LLVM structures.
      const struct EnumValueWitnessTable *_asEVWT() const;
    
      /// Get the type layout record within this value witness table.
      const TypeLayout *getTypeLayout() const {
        return reinterpret_cast<const TypeLayout *>(&size);
      }
    
      /// Check whether this metadata is complete.
      bool checkIsComplete() const;
    
      /// "Publish" the layout of this type to other threads.  All other stores
      /// to the value witness table (including its extended header) should have
      /// happened before this is called.
      void publishLayout(const TypeLayout &layout);
    };
    
    

    很明了,VWT中存放的是 size(大小)、alignment(对齐方式)、stride(步长),大致结构图👇

    所以metadata中都存放了VWT来管理类型的值。比如Int、String、Class的复制销毁创建以及是否需要引用计数

    再回过头来看看上面示例的IR代码,其实执行的流程大致如下👇

    1. 询问metadataVWT:size,stride分配内存空间
    2. 初始化temp
    3. 调用VWT-copy方法拷贝值到temp
    4. 返回temp
    5. 调用VWT-destory方法销毁局部变量

    所以👇

    泛型在整个运行过程中的关键依赖于metadata

    3.2 源码调试

    主要分为2类调试:值类型和引用类型。

    3.2.1 值类型的调试

    首先打上断点👇

    打开汇编👇

    运行👇

    然后,我们去swift源码中查找NativeBox(在metadataimpl.h源码中)👇

    对于值类型通过内存copy和move进行内存处理。

    3.2.2 引用类型的调试

    同理,引用类型也是先打上断点,查看汇编 👇

    /// A box implementation class for Swift object pointers.
    struct SwiftRetainableBox :
        RetainableBoxBase<SwiftRetainableBox, HeapObject*> {
      static HeapObject *retain(HeapObject *obj) {
        if (isAtomic) {
          swift_retain(obj);
        } else {
          swift_nonatomic_retain(obj);
        }
        return obj;
      }
    
      static void release(HeapObject *obj) {
        if (isAtomic) {
          swift_release(obj);
        } else {
          swift_nonatomic_release(obj);
        }
      }
    };
    

    SwiftRetainableBox继承RetainableBoxBase👇

    /// A CRTP base class for defining boxes of retainable pointers.
    template <class Impl, class T> struct RetainableBoxBase {
      using type = T;
      static constexpr size_t size = sizeof(T);
      static constexpr size_t alignment = alignof(T);
      static constexpr size_t stride = sizeof(T);
      static constexpr bool isPOD = false;
      static constexpr bool isBitwiseTakable = true;
    #ifdef SWIFT_STDLIB_USE_NONATOMIC_RC
      static constexpr bool isAtomic = false;
    #else
      static constexpr bool isAtomic = true;
    #endif
    
      static void destroy(T *addr) {
        Impl::release(*addr);
      }
    
      static T *initializeWithCopy(T *dest, T *src) {
        *dest = Impl::retain(*src);
        return dest;
      }
    
      static T *initializeWithTake(T *dest, T *src) {
        *dest = *src;
        return dest;
      }
      
      static T *assignWithCopy(T *dest, T *src) {
        T oldValue = *dest;
        *dest = Impl::retain(*src);
        Impl::release(oldValue);
        return dest;
      }
    
      static T *assignWithTake(T *dest, T *src) {
        T oldValue = *dest;
        *dest = *src;
        Impl::release(oldValue);
        return dest;
      }
    
      // Right now, all object pointers are brought down to the least
      // common denominator for extra inhabitants, so that we don't have
      // to worry about e.g. type substitution on an enum type
      // fundamentally changing the layout.
      static constexpr unsigned numExtraInhabitants =
        swift_getHeapObjectExtraInhabitantCount();
    
      static void storeExtraInhabitantTag(T *dest, unsigned tag) {
        swift_storeHeapObjectExtraInhabitant((HeapObject**) dest, tag - 1);
      }
    
      static unsigned getExtraInhabitantTag(const T *src) {
        return swift_getHeapObjectExtraInhabitantIndex((HeapObject* const *) src) +1;
      }
    };
    

    所以,引用类型的处理中也包含了destroy initializeWithCopyinitializeWithTake。再回过头来看👇

    所以👇

    对于引用类型,会调用retain进行引用计数+1,处理完在调用destory,而destory中是调用release进行引用计数-1

    小结
    • 对于一个值类型,例如Integer👇

      1、该类型的copy和move操作会进行内存拷贝
      2、destory操作则不进行任何操作

    • 对于一个引用类型,如class👇

      1、该类型的copy操作会对引用计数+1,
      2、move操作会拷贝指针,而不会更新引用计数
      3、destory操作会对引用计数-1

    3.3 方法作为类型

    还有一种场景 👉 如果把一个方法当做泛型类型传递进去呢?例如👇

    func makeIncrementer() -> (Int) -> Int {
        var runningTotal = 10
        return {
            runningTotal += $0
            return runningTotal
        }
    }
    
    func test<T>(_ value: T) {
    
    }
    
    let makeInc = makeIncrementer()
    test(makeInc)
    

    我们还是看IR👇

    流程并不复杂,我们可以通过内存绑定仿写这个过程👇

    仿写
    struct HeapObject {
        var type: UnsafeRawPointer
        var refCount1: UInt32
        var refcount2: UInt32
    }
    
    struct Box<T> {
        var refCounted:HeapObject
        var value: T //捕获值
    }
    
    struct FunctionData<BoxType> {
        var ptr: UnsafeRawPointer //内嵌函数地址
        var captureValue: UnsafePointer<BoxType>? //捕获值地址
    }
    
    struct TestData<T> {
        var  ref: HeapObject
        var function: FunctionData<T>
    }
    
    func makeIncrementer() -> (Int) -> Int {
        var runningTotal = 10
        return {
            runningTotal += $0
            return runningTotal
        }
    }
    
    func test<T>(_ value: T) {
        let ptr  = UnsafeMutablePointer<T>.allocate(capacity: 1)
        ptr.initialize(to: value)
        //对于泛型T来说做了一层TestData桥接,目的是为了能够更好的解决不同值传递
        let ctx = ptr.withMemoryRebound(to: FunctionData<TestData<Box<Int>>>.self, capacity: 1) {
            $0.pointee.captureValue?.pointee.function.captureValue!
        }
        
        print(ctx?.pointee.value)
        ptr.deinitialize(count: 1)
        ptr.deallocate()
    }
    
    //{i8 *, swift type *}
    let makeInc = makeIncrementer()
    test(makeInc)
    

    运行👇

    对于泛型T来说做了一层TestData桥接,目的是为了能够更好的解决不同值传递

    总结

    本篇文章重点分析了Swift泛型基础语法IR底层的处理流程,分别分析了值类型引用类型函数入参的场景,希望大家能够掌握。至此,Swift的知识点均已覆盖完毕,感谢大家的支持!

    相关文章

      网友评论

        本文标题:Swift 泛型

        本文链接:https://www.haomeiwen.com/subject/boecxltx.html