美文网首页
Optimizer 优化器

Optimizer 优化器

作者: 地平线上的背影 | 来源:发表于2019-02-13 11:22 被阅读0次

本文介绍常见的优化器及其作用

1.数据及超参数准备

import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt

# torch.manual_seed(1)    # reproducible

LR = 0.01
B_S = 32
EPOCH = 12

# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))

# plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show()

2. 批训练数据

# put dateset into torch dataset
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(dataset=torch_dataset, batch_size=B_S, shuffle=True, num_workers=2,)

注:Data.DataLoader ,组合数据集和采样器,并在数据集上提供单进程或多进程迭代器。

3. 构建神经网络

# default network
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(1, 20)   # hidden layer
        self.predict = torch.nn.Linear(20, 1)   # output layer

    def forward(self, x):
        x = F.relu(self.hidden(x))      # activation function for hidden layer
        x = self.predict(x)             # linear output
        return x

4. 对比不同优化器

if __  _name_ __ == '__ _main_ __':
    # different nets
    net_SGD         = Net()
    net_Momentum    = Net()
    net_RMSprop     = Net()
    net_Adam        = Net()
    nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]

    # different optimizers
    opt_SGD         = torch.optim.SGD(net_SGD.parameters(), lr=LR)
    opt_Momentum    = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
    opt_RMSprop     = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
    opt_Adam        = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
    optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]

    loss_func = torch.nn.MSELoss()
    losses_his = [[], [], [], []]   # record loss

5. 训练并比较

    # training
    for epoch in range(EPOCH):
        print('Epoch: ', epoch)
        for step, (b_x, b_y) in enumerate(loader):          # for each training step
            for net, opt, l_his in zip(nets, optimizers, losses_his):
                output = net(b_x)              # get output for every net
                loss = loss_func(output, b_y)  # compute loss for every net
                opt.zero_grad()                # clear gradients for next train
                loss.backward()                # backpropagation, compute gradients
                opt.step()                     # apply gradients
                l_his.append(loss.data.numpy())     # loss recoder

6. 画图过程

    labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
    for i, l_his in enumerate(losses_his):
        plt.plot(l_his, label=labels[i])
    plt.legend(loc='best')
    plt.xlabel('Steps')
    plt.ylabel('Loss')
    plt.ylim((0, 0.2))
    plt.show()

相关文章

  • Optimizer 优化器

    本文介绍常见的优化器及其作用 1.数据及超参数准备 2. 批训练数据 注:Data.DataLoader ,组合数...

  • Optimizer优化器

    1、Adagrad优化算法(https://www.zhihu.com/question/453599361/an...

  • MySql高级之性能分析(四)

    1.MySql Query Optimizer:查询优化器。 ​ 1). Mysql中有专门负责优化SELECT语...

  • 01-08 Optimizers: Buliding a par

    优化器:构建参数化模型 Optimizer: find minimum values of functions b...

  • keras-常用函数

    顺序模型 Sequential 配置学习过程 compile 优化器 optimizer 损失函数 loss 评估...

  • RBO和CBO详解

    RBO和CBO的基本概念 Oracle数据库中的优化器又叫查询优化器(Query Optimizer)。它是SQL...

  • sql优化

    1、 优化器 优化器(Optimizer)是SQL分析和执行的优化工具,它负责生成、制定SQL的执行计划。主要有以...

  • 优化器算法Optimizer

    记: 梯度下降算法 系数更新公式为:不妨设,且损失函数为:则梯度为:对于BGD,n为全体数据量;对于SGD,n为1...

  • 2019-04-04派森学习第136天

    今天学习了tensorflow中的神经网络的几个优化器,现在总结比较一下各种优化器。 Optimizer 下面是 ...

  • pytorch之学习率变化策略之MultiplicativeLR

    MultiplicativeLR optimizer:优化器 lr_lambda:函数或者函数列表 last_ep...

网友评论

      本文标题:Optimizer 优化器

      本文链接:https://www.haomeiwen.com/subject/bopreqtx.html