美文网首页
SQL语句执行顺序

SQL语句执行顺序

作者: mayiwoaini | 来源:发表于2019-12-30 11:40 被阅读0次

    转自:https://blog.csdn.net/freeking101/article/details/76522504

    准备工作

    SELECT DISTINCT <select_list>
    FROM <left_table>
    <join_type> JOIN <right_table>
    ON <join_condition>
    WHERE <where_condition>
    GROUP BY <group_by_list>
    HAVING <having_condition>
    ORDER BY <order_by_condition>
    LIMIT <limit_number>
    

    继续做以下的前期准备工作:
    1.新建一个测试数据库TestDB;

     create database TestDB;
    

    2.创建测试表table1和table2;

     CREATE TABLE table1
     (
         customer_id VARCHAR(10) NOT NULL,
         city VARCHAR(10) NOT NULL,
         PRIMARY KEY(customer_id)
     )ENGINE=INNODB DEFAULT CHARSET=UTF8;
     
     CREATE TABLE table2
     (
         order_id INT NOT NULL auto_increment,
         customer_id VARCHAR(10),
         PRIMARY KEY(order_id)
     )ENGINE=INNODB DEFAULT CHARSET=UTF8;
    

    3.插入测试数据;

     INSERT INTO table1(customer_id,city) VALUES('163','hangzhou');
     INSERT INTO table1(customer_id,city) VALUES('9you','shanghai');
     INSERT INTO table1(customer_id,city) VALUES('tx','hangzhou');
     INSERT INTO table1(customer_id,city) VALUES('baidu','hangzhou');
     
     INSERT INTO table2(customer_id) VALUES('163');
     INSERT INTO table2(customer_id) VALUES('163');
     INSERT INTO table2(customer_id) VALUES('9you');
     INSERT INTO table2(customer_id) VALUES('9you');
     INSERT INTO table2(customer_id) VALUES('9you');
     INSERT INTO table2(customer_id) VALUES('tx');
     INSERT INTO table2(customer_id) VALUES(NULL);
    

    准备工作做完以后,table1和table2看起来应该像下面这样:

     mysql> select * from table1;
     +-------------+----------+
     | customer_id | city     |
     +-------------+----------+
     | 163         | hangzhou |
     | 9you        | shanghai |
     | baidu       | hangzhou |
     | tx          | hangzhou |
     +-------------+----------+
     4 rows in set (0.00 sec)
     
     mysql> select * from table2;
     +----------+-------------+
     | order_id | customer_id |
     +----------+-------------+
     |        1 | 163         |
     |        2 | 163         |
     |        3 | 9you        |
     |        4 | 9you        |
     |        5 | 9you        |
     |        6 | tx          |
     |        7 | NULL        |
     +----------+-------------+
     7 rows in set (0.00 sec)
    

    4.准备SQL逻辑查询测试语句

     SELECT a.customer_id, COUNT(b.order_id) as total_orders
     FROM table1 AS a
     LEFT JOIN table2 AS b
     ON a.customer_id = b.customer_id
     WHERE a.city = 'hangzhou'
     GROUP BY a.customer_id
     HAVING count(b.order_id) < 2
     ORDER BY total_orders DESC;
    

    使用上述SQL查询语句来获得来自杭州,并且订单数少于2的客户。

    SQL逻辑查询语句执行顺序

    那么,到底哪个先执行,哪个后执行呢?现在,先给出一个查询语句的执行顺序:

    
    (7)     SELECT                             /* 处理SELECT列表,产生 VT7 */
    (8)     DISTINCT <select_list>             /* 将重复的行从 VT7 中删除,产品 VT8 */
    (1)     FROM <left_table>                  /* 对FROM子句中的表执行笛卡尔积(交叉联接),生成虚拟表 VT1。*/
    (3)     <join_type> JOIN <right_table>     /* 如果指定了OUTER JOIN(相对于CROSS JOIN或INNER JOIN),
                                                  保留表中未找到匹配的行将作为外部行添加到 VT2,生成 VT3。
                                                  如果FROM子句包含两个以上的表,则对上一个联接生成的结果表和下一个表重复执行步骤1到步骤3,直到处理完所有的表位置。*/
    (2)     ON <join_condition>                /* 对 VT1 应用 ON 筛选器,只有那些使条件为真的行才被插入到 VT2。*/
    (4)     WHERE <where_condition>            /* 对 VT3 应用 WHERE 筛选器,只有使条件为真的行才插入VT4。*/
    (5)     GROUP BY <group_by_list>           /* 按 GROUP BY子句中的列列表对 VT4 中的行进行分组,生成 VT5。*/
    (6)     HAVING <having_condition>          /* 对 VT5 应用 HAVING 筛选器,只有使为true的组插入到 VT6 。*/
    (9)     ORDER BY <order_by_condition>      /* 将 VT8 中的行按 ORDER BY子句中的列列表顺序,生成一个游标(VC9)。*/
    (10)    LIMIT <limit_number>               /*生成表VT10,并返回给调用者。*/
    

    Oracle SQL语句执行顺序

    (8)SELECT (9)DISTINCT  (11)<Top Num> <select list>
    (1)FROM [left_table]
    (3)<join_type> JOIN <right_table>
    (2)ON <join_condition>
    (4)WHERE <where_condition>
    (5)GROUP BY <group_by_list>
    (6)WITH <CUBE | RollUP>
    (7)HAVING <having_condition>
    (10)ORDER BY <order_by_list>
    

    以上每个步骤都会产生一个虚拟表,该虚拟表被用作下一个步骤的输入。这些虚拟表对调用者(客户端应用程序或者外部查询)不可用。只有最后一步生成的表才会会给调用者。如果没有在查询中指定某一个子句,将跳过相应的步骤。

    逻辑查询处理阶段简介

    FROM:对FROM子句中的前两个表执行笛卡尔积(Cartesian product)(交叉联接),生成虚拟表VT1
    ON:对VT1应用ON筛选器。只有那些使<join_condition>为真的行才被插入VT2。
    OUTER(JOIN):如 果指定了OUTER JOIN(相对于CROSS JOIN 或(INNER JOIN),保留表(preserved table:左外部联接把左表标记为保留表,右外部联接把右表标记为保留表,完全外部联接把两个表都标记为保留表)中未找到匹配的行将作为外部行添加到 VT2,生成VT3.如果FROM子句包含两个以上的表,则对上一个联接生成的结果表和下一个表重复执行步骤1到步骤3,直到处理完所有的表为止。
    WHERE:对VT3应用WHERE筛选器。只有使<where_condition>为true的行才被插入VT4.
    GROUP BY:按GROUP BY子句中的列列表对VT4中的行分组,生成VT5.
    CUBE|ROLLUP:把超组(Suppergroups)插入VT5,生成VT6.
    HAVING:对VT6应用HAVING筛选器。只有使<having_condition>为true的组才会被插入VT7.
    SELECT:处理SELECT列表,产生VT8.
    DISTINCT:将重复的行从VT8中移除,产生VT9.
    ORDER BY:将VT9中的行按ORDER BY 子句中的列列表排序,生成游标(VC10).
    TOP:从VC10的开始处选择指定数量或比例的行,生成表VT11,并返回调用者
    

    注:按ORDER BY子句中的列列表排序上步返回的行,返回游标VC10。这一步是第一步也是唯一 一步可以使用SELECT列表中的列别名的步骤。这一步不同于其它步骤的是,它不返回有效的表,而是返回一个游标。SQL是基于集合理论的。集合不会预先对它的行排序,它只是成员的逻辑集合,成员的顺序无关紧要。对表进行排序的查询可以返回一个对象,包含按特定物理顺序组织的行。ANSI把这种对象称为游标。理解这一步是正确理解SQL的基础。因为这一步不返回表(而是返回游标),使用了ORDER BY子句的查询不能用作表表达式。表表达式包括:视图、内联表值函数、子查询、派生表和共用表达式。它的结果必须返回给期望得到物理记录的客户端应用程序。例如,下面的派生表查询无效,并产生一个错误:

    select * 
    from(select orderid,customerid from orders order by orderid) 
    as d
    

    下面的视图也会产生错误

    create view my_view
    as
    select *
    from orders
    order by orderid
    

    在SQL中,表表达式中不允许使用带有ORDER BY子句的查询,而在T—SQL中却有一个例外(应用TOP选项)。
    所以要记住,不要为表中的行假设任何特定的顺序。换句话说,除非你确定要有序行,否则不要指定ORDER BY 子句。
    以上就是一条sql的执行过程,同时我们在书写查询sql的时候应当遵守以下顺序。

    SELECT XXX FROM XXX WHERE XXX GROUP BY XXX HAVING XXX ORDER BY XXX LIMIT XXX;
    

    语句执行详情

    执行FROM语句
    在这些SQL语句的执行过程中,都会产生一个虚拟表,用来保存SQL语句的执行结果(这是重点),现在就来跟踪这个虚拟表的变化,得到最终的查询结果的过程,来分析整个SQL逻辑查询的执行顺序和过程。
    第一步,执行FROM语句。我们首先需要知道最开始从哪个表开始的,这就是FROM告诉我们的。现在有了<left_table>和<right_table>两个表,到底从哪个表开始,还是从两个表进行某种联系以后再开始呢?它们之间如何产生联系呢?——笛卡尔积
    经过FROM语句对两个表执行笛卡尔积,会得到一个虚拟表,暂且叫VT1(vitual table 1),内容如下:

    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 9you        | shanghai |        1 | 163         |
    | baidu       | hangzhou |        1 | 163         |
    | tx          | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        2 | 163         |
    | baidu       | hangzhou |        2 | 163         |
    | tx          | hangzhou |        2 | 163         |
    | 163         | hangzhou |        3 | 9you        |
    | 9you        | shanghai |        3 | 9you        |
    | baidu       | hangzhou |        3 | 9you        |
    | tx          | hangzhou |        3 | 9you        |
    | 163         | hangzhou |        4 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | baidu       | hangzhou |        4 | 9you        |
    | tx          | hangzhou |        4 | 9you        |
    | 163         | hangzhou |        5 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | baidu       | hangzhou |        5 | 9you        |
    | tx          | hangzhou |        5 | 9you        |
    | 163         | hangzhou |        6 | tx          |
    | 9you        | shanghai |        6 | tx          |
    | baidu       | hangzhou |        6 | tx          |
    | tx          | hangzhou |        6 | tx          |
    | 163         | hangzhou |        7 | NULL        |
    | 9you        | shanghai |        7 | NULL        |
    | baidu       | hangzhou |        7 | NULL        |
    | tx          | hangzhou |        7 | NULL        |
    +-------------+----------+----------+-------------+
    

    总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操作就在VT1的基础上进行。
    执行ON过滤
    执行完笛卡尔积以后,接着就进行ON a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,得到VT2表,内容如下:

    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    

    VT2就是经过ON条件筛选以后得到的有用数据,而接下来的操作将在VT2的基础上继续进行。
    添加外部行
    这一步只有在连接类型为OUTER JOIN时才发生,如LEFT OUTER JOIN、RIGHT OUTER JOIN和FULL OUTER JOIN。在大多数的时候,我们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。
    LEFT OUTER JOIN把左表记为保留表,得到的结果为:

    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    

    RIGHT OUTER JOIN把右表记为保留表,得到的结果为:

    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | NULL        | NULL     |        7 | NULL        |
    +-------------+----------+----------+-------------+
    

    FULL OUTER JOIN把左右表都作为保留表,得到的结果为:

    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    | NULL        | NULL     |        7 | NULL        |
    +-------------+----------+----------+-------------+
    

    添加外部行的工作就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。
    由于在准备的测试SQL查询逻辑语句中使用的是LEFT JOIN,过滤掉了以下这条数据:

    | baidu       | hangzhou |     NULL | NULL        |
    

    现在就把这条数据添加到VT2表中,得到的VT3表如下:

    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    

    接下来的操作都会在该VT3表上进行。
    执行WHERE过滤
    对添加外部行得到的VT3进行WHERE过滤,只有符合<where_condition>的记录才会输出到虚拟表VT4中。当我们执行WHERE a.city = 'hangzhou'的时候,就会得到以下内容,并存在虚拟表VT4中:

    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    

    但是在使用WHERE子句时,需要注意以下两点:

    • 由于数据还没有分组,因此现在还不能在WHERE过滤器中使用where_condition=MIN(col)这类对分组统计的过滤;
    • 由于还没有进行列的选取操作,因此在SELECT中使用列的别名也是不被允许的,如:SELECT city as c FROM t WHERE c='shanghai';是不允许出现的。
      执行GROUP BY分组
      GROU BY子句主要是对使用WHERE子句得到的虚拟表进行分组操作。我们执行测试语句中的GROUP BY a.customer_id,就会得到以下内容:
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | baidu       | hangzhou |     NULL | NULL        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    

    得到的内容会存入虚拟表VT5中,此时,我们就得到了一个VT5虚拟表,接下来的操作都会在该表上完成。
    执行HAVING过滤
    HAVING子句主要和GROUP BY子句配合使用,对分组得到的VT5虚拟表进行条件过滤。当我执行测试语句中的HAVING count(b.order_id) < 2时,将得到以下内容:

    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | baidu       | hangzhou |     NULL | NULL        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    

    这就是虚拟表VT6。
    SELECT列表
    现在才会执行到SELECT子句,不要以为SELECT子句被写在第一行,就是第一个被执行的。
    我们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出我们需要的内容。我们将得到以下内容:

    +-------------+--------------+
    | customer_id | total_orders |
    +-------------+--------------+
    | baidu       |            0 |
    | tx          |            1 |
    +-------------+--------------+
    

    不,还没有完,这只是虚拟表VT7。
    执行DISTINCT子句
    如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT7是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来去除重复数据。由于测试SQL语句中并没有使用DISTINCT,所以,在该查询中,这一步不会生成一个虚拟表。
    执行ORDER BY子句
    对虚拟表中的内容按照指定的列进行排序,然后返回一个新的虚拟表,我们执行测试SQL语句中的ORDER BY total_orders DESC,就会得到以下内容:

    +-------------+--------------+
    | customer_id | total_orders |
    +-------------+--------------+
    | tx          |            1 |
    | baidu       |            0 |
    +-------------+--------------+
    

    可以看到这是对total_orders列进行降序排列的。上述结果会存储在VT8中。
    执行LIMIT子句
    LIMIT子句从上一步得到的VT8虚拟表中选出从指定位置开始的指定行数据。对于没有应用ORDER BYLIMIT子句,得到的结果同样是无序的,所以,很多时候,我们都会看到LIMIT子句会和ORDER BY子句一起使用。
    MySQL数据库的LIMIT支持如下形式的选择:

    LIMIT n, m
    

    表示从第n条记录开始选择m条记录。而很多开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量非常大的时候,使用LIMIT n, m是非常低效的。因为LIMIT的机制是每次都是从头开始扫描,如果需要从第60万行开始,读取3条数据,就需要先扫描定位到60万行,然后再进行读取,而扫描的过程是一个非常低效的过程。所以,对于大数据处理时,是非常有必要在应用层建立一定的缓存机制。

    习惯养成

    了解了 SQL 执行顺序,那么我们就接下来进一步养成日常 sql好习惯,也就是在实现功能同时有考虑性能的思想,数据库是能进行集合运算的工具,我们应该尽量的利用这个工具,所谓集合运算实际就是批量运算,就是尽量减少在客户端进行大数据量的循环操作,而用SQL语句或者存储过程代替。
    只返回需要的数据
    返回数据到客户端至少需要数据库提取数据、网络传输数据、客户端接收数据以及客户端处理数据等环节。
    如果返回不需要的数据,就会增加服务器、网络和客户端的无效劳动,其害处是显而易见的,避免这类事件需要注意:

    1. 横向来看:
      不要写SELECT * 的语句,而是选择你需要的字段。
      当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上。这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误。
      如有表table1(ID,col1)和table2 (ID,col2)
    Select A.ID, A.col1, B.col2
    -- Select A.ID, col1, col2     –不要这么写,不利于将来程序扩展
    from table1 A inner join table2 B on A.ID=B.ID Where …
    
    1. 纵向来看
      合理写WHERE子句,不要写没有WHERE的SQL语句。SELECT TOP N * --没有WHERE条件的用此替代
      尽量少做重复的工作。控制同一语句的多次执行,特别是一些基础数据的多次执行是很多程序员很少注意的。
      减少多次的数据转换,也许需要数据转换是设计的问题,但是减少次数是程序员可以做到的。
      杜绝不必要的子查询和连接表,子查询在执行计划一般解释成外连接,多余的连接表带来额外的开销。
      合并对同一表同一条件的多次UPDATE,比如:
    UPDATE EMPLOYEE SET FNAME='HAIWER'
    WHERE EMP_ID=' VPA30890F' 
    UPDATE EMPLOYEE SET LNAME='YANG'
    WHERE EMP_ID=' VPA30890F'
    -- 这两个语句应该合并成以下一个语句
    UPDATE EMPLOYEE SET FNAME='HAIWER',LNAME='YANG'  WHERE EMP_ID=' VPA30890F'
    

    UPDATE操作不要拆成DELETE操作+INSERT操作的形式,虽然功能相同,但是性能差别是很大的。
    注意 临时表 和 表变量 的用法
    在复杂系统中,临时表和表变量很难避免,关于临时表和表变量的用法,需要注意:

    • 如果语句很复杂,连接太多,可以考虑用临时表和表变量分步完成。
    • 如果需要多次用到一个大表的同一部分数据,考虑用临时表和表变量暂存这部分数据。
    • 如果需要综合多个表的数据,形成一个结果,可以考虑用临时表和表变量分步汇总这多个表的数据。
    • 其他情况下,应该控制临时表和表变量的使用。

    关于临时表和表变量的选择,很多说法是表变量在内存,速度快,应该首选表变量,但是在实际使用中发现,主要考虑需要放在临时表的数据量,在数据量较多的情况下,临时表的速度反而更快。执行时间段与预计执行时间(多长)。
    关于临时表产生使用SELECT INTO 和 CREATE TABLE + INSERT INTO 的选择。一般情况下,SELECT INTO会比CREATE TABLE + INSERT INTO的方法快很多,但是SELECT INTO会锁定TEMPDB的系统表SYSOBJECTS、SYSINDEXES、SYSCOLUMNS,
    在多用户并发环境下,容易阻塞其他进程,
    所以,在并发系统中,尽量使用CREATE TABLE + INSERT INTO,而大数据量的单个语句使用中,使用SELECT INTO。
    子查询的用法
    子查询是一个 SELECT 查询,它嵌套在 SELECT、INSERT、UPDATE、DELETE 语句或其它子查询中。
    任何允许使用表达式的地方都可以使用子查询,子查询可以使我们的编程灵活多样,可以用来实现一些特殊的功能。
    但是在性能上,往往一个不合适的子查询用法会形成一个性能瓶颈。
    如果子查询的条件中使用了其外层的表的字段,这种子查询就叫作相关子查询。
    相关子查询可以用IN、NOT IN、EXISTS、NOT EXISTS引入。
    关于相关子查询,应该注意:

    1. NOT IN、NOT EXISTS的相关子查询可以改用LEFT JOIN代替写法。
      比如:
        SELECT PUB_NAME FROM PUBLISHERS WHERE PUB_ID NOT IN (SELECT PUB_ID FROM TITLES WHERE TYPE = 'BUSINESS')
    可以改写成:
        SELECT A.PUB_NAME FROM PUBLISHERS A LEFT JOIN TITLES B ON B.TYPE = 'BUSINESS' AND A.PUB_ID=B. PUB_ID WHERE B.PUB_ID IS NULL
    又比如:
        SELECT TITLE FROM TITLES
        WHERE NOT EXISTS
         (SELECT TITLE_ID FROM SALES
        WHERE TITLE_ID = TITLES.TITLE_ID)
    可以改写成:
        SELECT TITLE
        FROM TITLES LEFT JOIN SALES
        ON SALES.TITLE_ID = TITLES.TITLE_ID
        WHERE SALES.TITLE_ID IS NULL
    
    1. 如果保证子查询没有重复 ,IN、EXISTS的相关子查询可以用INNER JOIN 代替。
      比如:
     SELECT PUB_NAME
        FROM PUBLISHERS
        WHERE PUB_ID IN
         (SELECT PUB_ID
         FROM TITLES
         WHERE TYPE = 'BUSINESS')
    可以改写成:
        SELECT A.PUB_NAME --SELECT DISTINCT A.PUB_NAME
        FROM PUBLISHERS A INNER JOIN TITLES B
        ON        B.TYPE = 'BUSINESS' AND
        A.PUB_ID=B. PUB_ID
    
    1. IN的相关子查询用EXISTS代替
      比如
    SELECT PUB_NAME FROM PUBLISHERS
        WHERE PUB_ID IN
        (SELECT PUB_ID FROM TITLES WHERE TYPE = 'BUSINESS')
    可以用下面语句代替:
        SELECT PUB_NAME FROM PUBLISHERS WHERE EXISTS
        (SELECT 1 FROM TITLES WHERE TYPE = 'BUSINESS' AND
        PUB_ID= PUBLISHERS.PUB_ID)
    
    1. 不要用COUNT(*)的子查询判断是否存在记录,最好用LEFT JOIN或者EXISTS
    比如有人写这样的语句:
        SELECT JOB_DESC FROM JOBS
        WHERE (SELECT COUNT(*) FROM EMPLOYEE WHERE JOB_ID=JOBS.JOB_ID)=0
    应该写成:
        SELECT JOBS.JOB_DESC FROM JOBS LEFT JOIN EMPLOYEE 
        ON EMPLOYEE.JOB_ID=JOBS.JOB_ID
        WHERE EMPLOYEE.EMP_ID IS NULL
    还有
        SELECT JOB_DESC FROM JOBS
        WHERE (SELECT COUNT(*) FROM EMPLOYEE WHERE JOB_ID=JOBS.JOB_ID)<>0
    应该写成:
        SELECT JOB_DESC FROM JOBS
        WHERE EXISTS (SELECT 1 FROM EMPLOYEE WHERE JOB_ID=JOBS.JOB_ID)
    

    尽量使用索引
    建立索引后,并不是每个查询都会使用索引,在使用索引的情况下,索引的使用效率也会有很大的差别。只要我们在查询语句中没有强制指定索引,索引的选择和使用方法是SQLSERVER的优化器自动作的选择,而它选择的根据是查询语句的条件以及相关表的统计信息,这就要求我们在写SQL语句的时候尽量使得优化器可以使用索引。为了使得优化器能高效使用索引,写语句的时候应该注意:
    不要对索引字段进行运算,而要想办法做变换

     SELECT ID FROM T WHERE NUM/2=100
     应改为:
    SELECT ID FROM T WHERE NUM=100*2
    SELECT ID FROM T WHERE NUM/2=NUM1
    如果NUM有索引应改为:
    SELECT ID FROM T WHERE NUM=NUM1*2
    如果NUM1有索引则不应该改。
    发现过这样的语句:
    SELECT 年,月,金额 FROM 结余表  WHERE 100*年+月=2010*100+10
    应该改为:
    SELECT 年,月,金额 FROM 结余表 WHERE 年=2010 AND月=10
    

    不要对索引字段进行格式转换

    日期字段的例子:
    WHERE CONVERT(VARCHAR(10), 日期字段,120)='2010-07-15'
    应该改为
    WHERE日期字段>='2010-07-15'   AND   日期字段<'2010-07-16'
    ISNULL转换的例子:
    WHERE ISNULL(字段,' ')<>' '应改为:WHERE字段<>' '
    WHERE ISNULL(字段,' ')=' '不应修改
    WHERE ISNULL(字段,'F') ='T'应改为: WHERE字段='T'
    WHERE ISNULL(字段,'F')<>'T'不应修改
    

    不要对索引字段使用函数

    WHERE LEFT(NAME, 3)='ABC' 或者WHERE SUBSTRING(NAME,1, 3)='ABC'
    应改为: WHERE NAME LIKE 'ABC%'
    日期查询的例子:
    WHERE DATEDIFF(DAY, 日期,'2010-06-30')=0
    应改为:WHERE 日期>='2010-06-30' AND 日期 <'2010-07-01'
    WHERE DATEDIFF(DAY, 日期,'2010-06-30')>0
    应改为:WHERE 日期 <'2010-06-30'
    WHERE DATEDIFF(DAY, 日期,'2010-06-30')>=0
    应改为:WHERE 日期 <'2010-07-01'
    WHERE DATEDIFF(DAY, 日期,'2010-06-30')<0
    应改为:WHERE 日期>='2010-07-01'
    WHERE DATEDIFF(DAY, 日期,'2010-06-30')<=0
    应改为:WHERE 日期>='2010-06-30'
    

    不要对索引字段进行多字段连接

    比如:
    WHERE FAME+ '. '+LNAME='HAIWEI.YANG'
    应改为:
    WHERE FNAME='HAIWEI' AND LNAME='YANG'
    

    多表连接的连接条件
    多表连接的连接条件对索引的选择有着重要的意义,所以我们在写连接条件的时候需要特别注意。
    多表连接的时候,连接条件必须写全,宁可重复,不要缺漏。
    连接条件尽量使用聚集索引
    注意ON、WHERE和HAVING部分条件的区别
    ON是最先执行,WHERE次之,HAVING最后。因为ON是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,WHERE也应该比 HAVING快点的,因为它过滤数据后才进行SUM,在两个表联接时才用ON的,所以在一个表的时候,就剩下WHERE跟HAVING比较了。
    考虑联接优先顺序
    INNER JOIN
    LEFT JOIN (注:RIGHT JOIN 用 LEFT JOIN 替代)
    CROSS JOIN
    其它注意和了解的地方有
    在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,减少判断的次数
    注意UNION和UNION ALL的区别。--允许重复数据用UNION ALL好
    注意使用DISTINCT,在没有必要时不要用

    相关文章

      网友评论

          本文标题:SQL语句执行顺序

          本文链接:https://www.haomeiwen.com/subject/bqepoctx.html