float systemCPUPercent() {
// Create an array of thread ports for the current task.
const task_t task = mach_task_self();
thread_act_array_t thread_array;
mach_msg_type_number_t thread_count;
if (task_threads(task, &thread_array, &thread_count) != KERN_SUCCESS) {
return -1;
}
// Sum cpu usage from all threads.
float cpu_usage_percentage = 0;
thread_basic_info_data_t thread_info_data = {};
mach_msg_type_number_t thread_info_count;
for (size_t i = 0; i < thread_count; ++i) {
thread_info_count = THREAD_BASIC_INFO_COUNT;
kern_return_t ret = thread_info(thread_array[i],
THREAD_BASIC_INFO,
(thread_info_t)&thread_info_data,
&thread_info_count);
if (ret == KERN_SUCCESS) {
cpu_usage_percentage +=
100.f * (float)thread_info_data.cpu_usage / TH_USAGE_SCALE;
}
}
// Dealloc the created array.
vm_deallocate(task, (vm_address_t)thread_array,
sizeof(thread_act_t) * thread_count);
return cpu_usage_percentage;
}
float appUseCPUPercent()
{
kern_return_t kr;
task_info_data_t tinfo;
mach_msg_type_number_t task_info_count;
task_info_count = TASK_INFO_MAX;
kr = task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)tinfo, &task_info_count);
if (kr != KERN_SUCCESS) {
return -1;
}
task_basic_info_t basic_info;
thread_array_t thread_list;
mach_msg_type_number_t thread_count;
thread_info_data_t thinfo;
mach_msg_type_number_t thread_info_count;
thread_basic_info_t basic_info_th;
uint32_t stat_thread = 0; // Mach threads
basic_info = (task_basic_info_t)tinfo;
// get threads in the task
kr = task_threads(mach_task_self(), &thread_list, &thread_count);
if (kr != KERN_SUCCESS) {
return -1;
}
if (thread_count > 0)
stat_thread += thread_count;
long tot_sec = 0;
long tot_usec = 0;
float tot_cpu = 0;
int j;
for (j = 0; j < thread_count; j++)
{
thread_info_count = THREAD_INFO_MAX;
kr = thread_info(thread_list[j], THREAD_BASIC_INFO,
(thread_info_t)thinfo, &thread_info_count);
if (kr != KERN_SUCCESS) {
return -1;
}
basic_info_th = (thread_basic_info_t)thinfo;
if (!(basic_info_th->flags & TH_FLAGS_IDLE)) {
tot_sec = tot_sec + basic_info_th->user_time.seconds + basic_info_th->system_time.seconds;
tot_usec = tot_usec + basic_info_th->user_time.microseconds + basic_info_th->system_time.microseconds;
tot_cpu = tot_cpu + basic_info_th->cpu_usage / (float)TH_USAGE_SCALE * 100.0;
}
} // for each thread
kr = vm_deallocate(mach_task_self(), (vm_offset_t)thread_list, thread_count * sizeof(thread_t));
assert(kr == KERN_SUCCESS);
return tot_cpu;
}
static float const kUnit = 1000.0;
// 系统内存
double systemMemory(void)
{
vm_statistics_data_t vmStats;
mach_msg_type_number_t infoCount = HOST_VM_INFO_COUNT;
kern_return_t kernReturn = host_statistics(mach_host_self(),
HOST_VM_INFO,
(host_info_t)&vmStats,
&infoCount);
if (kernReturn != KERN_SUCCESS) {
return NSNotFound;
}
return (vm_page_size *vmStats.free_count) / kUnit / kUnit;
}
// 应用使用内存
double appUsedMemory(void)
{
task_basic_info_data_t taskInfo;
mach_msg_type_number_t infoCount =TASK_BASIC_INFO_COUNT;
kern_return_t kernReturn =task_info(mach_task_self(),
TASK_BASIC_INFO,
(task_info_t)&taskInfo,
&infoCount);
if (kernReturn != KERN_SUCCESS) {
return NSNotFound;
}
return taskInfo.resident_size / kUnit / kUnit;
}
网友评论