美文网首页
实体关系抽取代码解读data_build.py

实体关系抽取代码解读data_build.py

作者: 陶_306c | 来源:发表于2021-04-05 12:03 被阅读0次

    代码地址:https://github.com/NeilGY/NER_entityRelationExtration
    CSDN解读:https://blog.csdn.net/NeilGY/article/details/87966676

    1、tf.nn.embedding_lookup()

    一般做自然语言相关的。需要把每个词都映射成向量,这个向量可以是word2vec预训练好的,也可以是在网络里训练的,在网络里需要先把词的id转换成对应的向量,这个函数就是做这件事的

    在基于深度学习的实体识别中,字向量会提前训练好,这个就可以理解成上面的tensor,而在实际的句子中每一个字所对应的字向量是通过id进行关联上的

    例子:

    
    #coding:utf-8
     
    import tensorflow as tf
     
    import numpy as np
     
    c = np.random.random([5,1])  ##随机生成一个5*1的数组
     
    b = tf.nn.embedding_lookup(c, [1, 3]) ##查找数组中的序号为1和3的
     
    with tf.Session() as sess:
     
        sess.run(tf.initialize_all_variables())
     
        print(sess.run(b))
     
        print(c)
    输出的结果如下所示:
    
    [[0.5687709 ]
    
     [0.61091257]]
    
     
    
    [[0.31777381]
    
     [0.5687709 ]
    
     [0.1779548 ]
    
     [0.61091257]
    
     [0.65478204]]
    

    在c中第2个元素为0.5687709,第4个元素是0.61091257(索引从0开始),刚好是b的值

    2、tf.contrib.crf

    functions

    crf_binary_score(...): Computes the binary scores of tag sequences.
    crf_decode(...): Decode the highest scoring sequence of tags in TensorFlow.
    crf_log_likelihood(...): Computes the log-likelihood of tag sequences in a CRF.
    crf_log_norm(...): Computes the normalization for a CRF.
    crf_multitag_sequence_score(...): Computes the unnormalized score of all tag sequences matching tag_bitmap.
    crf_sequence_score(...): Computes the unnormalized score for a tag sequence.
    crf_unary_score(...): Computes the unary scores of tag sequences.
    viterbi_decode(...): Decode the highest scoring sequence of tags outside of TensorFlow.
    

    训练过程

    Tensorflow 中 tf.contrib.crf.crf_log_likelihood 用于计算crf_loss,
    bi-lstm + crf 或 idcnn + crf 结构中作为crf的网络的损失函数。

    import tensorflow as tf
    from tensorflow.contrib.crf import viterbi_decode
    from tensorflow.contrib.crf import crf_decode
    
    score = [[
        [1, 2, 3],
        [2, 1, 3],
        [1, 3, 2],
        [3, 2, 1]
    ]]  # (batch_size, time_step, num_tabs)
    transition = [
        [2, 1, 3],
        [1, 3, 2],
        [3, 2, 1]
    ]   # (num_tabs, num_tabs)
    lengths = [len(score[0])]   # (batch_size, time_step)
    
    # numpy
    print("[numpy]")
    np_op = viterbi_decode(
       score=np.array(score[0]),
       transition_params=np.array(transition))
    print(np_op[0])
    print(np_op[1])
    print("=============")
    
    # tensorflow
    score_t         = tf.constant(score, dtype=tf.int64)
    transition_t    = tf.constant(transition, dtype=tf.int64)
    lengths_t       = tf.constant(lengths, dtype=tf.int64)
    tf_op = crf_decode(
        potentials=score_t,
        transition_params=transition_t,
        sequence_length=lengths_t)
    with tf.Session() as sess:
        paths_tf, scores_tf = sess.run(tf_op)
        print("[tensorflow]")
        print(paths_tf)
        print(scores_tf)
    
    [numpy]
    [2, 0, 2, 0]
    19
    =============
    [tensorflow]
    [[2 0 2 0]]
    [19]
    

    tf.contrib.crf.crf_log_likelihood(inputs, tag_indices, sequence_lengths, transition_params=None)
    函数的目的:使用crf 来计算损失,里面用到的优化方法是:最大似然估计,即在一个条件随机场里计算标签序列的log_likelihood

    参数说明
    inputs: [batch_size, max_seq_len, num_tags] ,一般使用BiLSTM处理之后输出转化为它要求的形状作为crf层的输入;
    tag_indices: [batch_size, max_seq_len] 真实标签
    sequence_lengths: [batch_size] 表示每个序列的长度
    transition_params: [num_tags, num_tags]转移矩阵
    # 返回值
    log_likelihood: 标量,log_likelihood
    transition_params:[num_tags, num_tags]转移矩阵
    

    2、tf.einsum

    1、job lib

    import joblib
    # 读取训练好的词向量语料库[418130,50]
    filename_embeddings = "data/vecs.lc.over100freq.txt"
    wordvectors, representationsize, words, wordindices = joblib.load(filename_embeddings + ".pkl")
    print(representationsize)#每个字的维度50
    print(words) # 所有字的集合
    print(wordindices) # 每个字的索引:...'endifeq': 418127, '˚13': 418128, 'jaあ': 418129}
    

    2、train_id_docs

    self.train_id_docs = parsers.readHeadFile(self.filename_train)
    self.dev_id_docs = parsers.readHeadFile(self.filename_dev)
    self.test_id_docs = parsers.readHeadFile(self.filename_test)
    
    def getCharsFromDocuments(documents):
        chars = []
        for doc in documents:
            for tokens in doc.tokens:
                for char in tokens:
                    # print (token)
                    chars.append(char)
        chars = list(set(chars))
        chars.sort()
        return chars
    

    相关文章

      网友评论

          本文标题:实体关系抽取代码解读data_build.py

          本文链接:https://www.haomeiwen.com/subject/bsttkltx.html