美文网首页AndroidAndroid进阶RxJava
Rxjava2入门教程五:Flowable背压支持——几乎可以说

Rxjava2入门教程五:Flowable背压支持——几乎可以说

作者: afa1332 | 来源:发表于2017-08-13 23:04 被阅读8242次

    为避免手机阅读时,代码格式错乱,本教程中大多数代码均以图片形式展示
    如需下载源码,请访问
    https://github.com/fengchuanfang/Rxjava2Tutorial
    文章原创,转载请注明出处:
    Rxjava2入门教程五:Flowable背压支持——几乎可以说是对Flowable最全面而详细的讲解


    通过前面四节的学习,我们已经了解了Rxjava2的基础内容,掌握了Observer与Observable这对最典型的观察者与可观察对象的组合。
    1、创建一个可观察对象Observable发射数据流
    2、通过操作符Operator加工处理数据流
    3、通过线程调度器Scheduler指定操作数据流所在的线程
    4、创建一个观察者Observer接收响应数据流

    在之后的章节中,我们一起了解一下Rxjava2的高级内容

    背压(backpressure)

    通过上节的学习,我们了解到数据流发射,处理,响应可能在各自的线程中独立进行,上游在发射数据的时候,不知道下游是否处理完,也不会等下游处理完之后再发射。
    这样,如果上游发射的很快而下游处理的很慢,会怎样呢?
    将会产生很多下游没来得及处理的数据,这些数据既不会丢失,也不会被垃圾回收机制回收,而是存放在一个异步缓存池中,如果缓存池中的数据一直得不到处理,越积越多,最后就会造成内存溢出,这便是Rxjava中的背压问题。
    例如,运行以下代码:

    demo1.jpg

    创建一个可观察对象Obervable在Schedulers.newThread()()的线程中不断发送数据,而观察者Observer在Schedulers.newThread()的另一个线程中每隔5秒接收一条数据,运行后,查看内存使用如下:

    backpressure.gif

    由于上下游分别在各自的线程中独立处理数据(如果上下游在同一线程中,下游对数据的处理会堵塞上游数据的发送,上游发送一条数据后会等下游处理完之后再发送下一条),而上游发送数据速度远大于下游接收数据的速度,造成上下游流速不均,导致数据累计,最后引起内存溢出。

    Flowable

    Flowable是为了解决背压(backpressure)问题,而在Observable的基础上优化后的产物,与Observable不是同一组观察者模式下的成员,Flowable是Publisher与Subscriber这一组观察者模式中Publisher的典型实现,Observable是ObservableSource/Observer这一组观察者模式中ObservableSource的典型实现;
    所以在使用Flowable的时候,可观察对象不再是Observable,而是Flowable;观察者不再是Observer,而是Subscriber。Flowable与Subscriber之间依然通过subscribe()进行关联。
    有些朋友可能会想,既然Flowable是在Observable的基础上优化后的产物,Observable能解决的问题Flowable都能进行解决,何不抛弃Observable而只用Flowable呢。其实,这是万万不可的,他们各有自己的优势和不足。
    由于基于Flowable发射的数据流,以及对数据加工处理的各操作符都添加了背压支持,附加了额外的逻辑,其运行效率要比Observable低得多。
    因为只有上下游运行在各自的线程中,且上游发射数据速度大于下游接收处理数据的速度时,才会产生背压问题。
    所以,如果能够确定上下游在同一个线程中工作,或者上下游工作在不同的线程中,而下游处理数据的速度高于上游发射数据的速度,则不会产生背压问题,就没有必要使用Flowable,以免影响性能。
    通过Flowable发射处理数据流的基础代码如下:

    demo2.jpg

    执行结果如下:

    System.out: 发射----> 1
    System.out: 发射----> 2
    System.out: 发射----> 3
    System.out: 发射----> 完成
    System.out: 接收----> 1
    System.out: 接收----> 2
    System.out: 接收----> 3
    System.out: 接收----> 完成
    

    我们发现运行结果与Observerable没有区别,但是的代码中,除了为上下游指定各自的运行线程外,还有三点不同
    一、create方法中多了一个BackpressureStrategy类型的参数。
    二、onSubscribe回调的参数不是Disposable而是Subscription,多了行代码:

    s.request(Long.MAX_VALUE);
    

    三、Flowable发射数据时,使用的发射器是FlowableEmitter而不是ObservableEmitter

    BackpressureStrategy背压策略

    在Flowable的基础创建方法create中多了一个BackpressureStrategy类型的参数,
    BackpressureStrategy是个枚举,源码如下:

    public enum BackpressureStrategy {
       ERROR,BUFFER,DROP,LATEST,MISSING
    }
    

    其作用是什么呢?
    Flowable的异步缓存池不同于Observable,Observable的异步缓存池没有大小限制,可以无限制向里添加数据,直至OOM,而Flowable的异步缓存池有个固定容量,其大小为128。
    BackpressureStrategy的作用便是用来设置Flowable通过异步缓存池存储数据的策略。

    ERROR

    在此策略下,如果放入Flowable的异步缓存池中的数据超限了,则会抛出MissingBackpressureException异常。
    运行如下代码:

    demo3.jpg

    Flowable发射129条数据,Subscriber在睡10秒之后再开始接收,运行后会发现控制台打印如下异常:

    W/System.err: io.reactivex.exceptions.MissingBackpressureException: create: could not emit value due to lack of requests
    W/System.err:     at io.reactivex.internal.operators.flowable.FlowableCreate$ErrorAsyncEmitter.onOverflow(FlowableCreate.java:411)
    W/System.err:     at io.reactivex.internal.operators.flowable.FlowableCreate$NoOverflowBaseAsyncEmitter.onNext(FlowableCreate.java:377)
    W/System.err:     at net.fbi.rxjava2.RxJava2Demo$6.subscribe(RxJava2Demo.java:103)
    W/System.err:     at io.reactivex.internal.operators.flowable.FlowableCreate.subscribeActual(FlowableCreate.java:72)
    W/System.err:     at io.reactivex.Flowable.subscribe(Flowable.java:12218)
    W/System.err:     at io.reactivex.internal.operators.flowable.FlowableSubscribeOn$SubscribeOnSubscriber.run(FlowableSubscribeOn.java:82)
    W/System.err:     at io.reactivex.internal.schedulers.ScheduledRunnable.run(ScheduledRunnable.java:59)
    W/System.err:     at io.reactivex.internal.schedulers.ScheduledRunnable.call(ScheduledRunnable.java:51)
    W/System.err:     at java.util.concurrent.FutureTask.run(FutureTask.java:237)
    W/System.err:     at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:154)
    W/System.err:     at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:269)
    W/System.err:     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1113)
    W/System.err:     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:588)
    W/System.err:     at java.lang.Thread.run(Thread.java:818)
    

    如果将Flowable发射数据的条数改为128,则不会出现此异常。

    DROP

    在此策略下,如果Flowable的异步缓存池满了,会丢掉将要放入缓存池中的数据。
    运行如下代码:

    demo4.jpg

    在上面代码中通过创建Flowable发射500条数据,每隔100毫秒发射一次,并记录开始发射和结束发射的时间,下游每隔300毫秒接收一次数据,运行后,控制台打印日志如下:

    GIF111.gif

    通过日志

    1.jpg

    我们可以发现Subscriber在接收完第128条数据后,再次接收的时候已经到了288,而这之间的60条数据正是因为缓存池满了而被丢弃掉了。
    那么问题来了,当Flowable在发射第129条数据的时候,Subscriber已经接收了42条数据了,第129条数据为什么没有放入缓存池中呢?日志如下:


    2.jpg

    那是因为缓存池中数据的清理,并不是Subscriber接收一条,便清理一条,而是每累积到95条清理一次。也就是Subscriber接收到第96条数据时,缓存池才开始清理数据,之后Flowable发射的数据才得以放入。

    3.jpg

    查看日志可以发现,Subscriber接收到第96条数据后,Flowable发射第288条数据。而第128到288之间的数据,正好处于缓存池存满的状态,而被丢弃,所以Subscriber在接收完第128条数据之后,接收到的是第288条数据,而不是第129条。

    LATEST

    与Drop策略一样,如果缓存池满了,会丢掉将要放入缓存池中的数据,不同的是,不管缓存池的状态如何,LATEST都会将最后一条数据强行放入缓存池中。
    将上述代码中的DROP策略改为LATEST:

    demo5.jpg

    运行后日志对比如下:
    DROP:


    DROP.jpg

    LATEST:

    LATEST.jpg

    latest策略下Subscriber在接收完成之前,接收的数据是Flowable发射的最后一条数据,而Drop策略下不是。

    BUFFER

    此策略下,Flowable的异步缓存池同Observable的一样,没有固定大小,可以无限制向里添加数据,不会抛出MissingBackpressureException异常,但会导致OOM。
    运行如下代码:

    demo6.jpg

    查看内存使用:

    GIF222.gif

    会发现和使用Observalbe时一样,都会导致内存剧增,最后导致OOM,不同的是使用Flowable内存增长的速度要慢得多,那是因为基于Flowable发射的数据流,以及对数据加工处理的各操作符都添加了背压支持,附加了额外的逻辑,其运行效率要比Observable低得多。

    MISSING

    此策略表示,通过Create方法创建的Flowable没有指定背压策略,不会对通过OnNext发射的数据做缓存或丢弃处理,需要下游通过背压操作符(onBackpressureBuffer()/onBackpressureDrop()/onBackpressureLatest())指定背压策略。

    onBackpressureXXX背压操作符

    Flowable除了通过create创建的时候指定背压策略,也可以在通过其它创建操作符just,fromArray等创建后通过背压操作符指定背压策略。
    onBackpressureBuffer()对应BackpressureStrategy.BUFFER
    onBackpressureDrop()对应BackpressureStrategy.DROP
    onBackpressureLatest()对应BackpressureStrategy.LATEST
    例如代码

    demo7.jpg

    等同于,代码:

    demo8.jpg

    Subscription

    Subscription与Disposable均是观察者与可观察对象建立订阅状态后回调回来的参数,如同通过Disposable的dispose()方法可以取消Observer与Oberverable的订阅关系一样,通过Subscription的cancel()方法也可以取消Subscriber与Flowable的订阅关系。
    不同的是接口Subscription中多了一个方法request(long n),如上面代码中的:

     s.request(Long.MAX_VALUE);   
    

    此方法的作用是什么呢,去掉这个方法会有什么影响呢?
    运行如下代码:

    demo9.jpg

    运行结果如下:

    System.out: 发射----> 1
    System.out: 发射----> 2
    System.out: 发射----> 3
    System.out: 发射----> 完成
    

    我们发现Flowable照常发送数据,而Subsriber不再接收数据。
    这是因为Flowable在设计的时候,采用了一种新的思路——响应式拉取方式,来设置下游对数据的请求数量,上游可以根据下游的需求量,按需发送数据。
    如果不显示调用request则默认下游的需求量为零,所以运行上面的代码后,上游Flowable发射的数据不会交给下游Subscriber处理。
    运行如下代码:

    demo10.jpg

    运行结果如下:

    System.out: 发射----> 1
    System.out: 发射----> 2
    System.out: 发射----> 3
    System.out: 发射----> 完成
    System.out: 接收----> 1
    System.out: 接收----> 2
    

    我们发现通过s.request(2);设置Subscriber的数据请求量为2条,超出其请求范围之外的数据则没有接收。
    多次调用request会产生怎样的结果呢?
    运行如下代码:

    demo11.jpg

    通过Flowable发射10条数据,在onSubscribe(Subscription s) 方法中调用两次request,运行结果如下:

    AB417C9CAC5A4BD98375240B5A5C1D6A.jpg

    我们发现Subscriber总共接收了7条数据,是两次需求累加后的数量。

    通过日志我们发现,上游并没有根据下游的实际需求,发送数据,而是能发送多少,就发送多少,不管下游是否需要。
    而且超出下游需求之外的数据,仍然放到了异步缓存池中。这点我们可以通过以下代码来验证:

    demo12.jpg

    通过Flowable发射130条数据,通过s.request(1)设置下游的数据请求量为1条,设置缓存策略为BackpressureStrategy.ERROR,如果异步缓存池超限,会导致MissingBackpressureException异常。
    运行之后,日志如下:

    MissingBackpressureException.jpg

    久违的异常出现了,所以超出下游需求之外的数据,仍然放到了异步缓存池中,并导致缓存池溢出。

    那么上游如何才能按照下游的请求数量发送数据呢,
    虽然通过request可以设置下游的请求数量,但是上游并没有获取到这个数量,如何获取呢?
    这便需要用到Flowable与Observable的第三点区别,Flowable特有的发射器FlowableEmitter

    FlowableEmitter

    flowable的发射器FlowableEmitter与observable的发射器ObservableEmitter均继承自Emitter(Emitter在教程二中已经说过了)
    比较两者源码可以发现;

    public interface ObservableEmitter<T> extends Emitter<T> {
    
        void setDisposable(Disposable d);
    
        void setCancellable(Cancellable c);
    
        boolean isDisposed();
      
        ObservableEmitter<T> serialize();
    }
    

    public interface FlowableEmitter<T> extends Emitter<T> {
    
        void setDisposable(Disposable s);
    
        void setCancellable(Cancellable c);
    
        long requested();
    
        boolean isCancelled();
    
        FlowableEmitter<T> serialize();
    }
    

    接口FlowableEmitter中多了一个方法

    long requested();
    

    我们可以通过这个方法来获取当前未完成的请求数量,
    运行下面的代码,这次我们要先丧失一下原则,虽然我们之前说过同步状态下不使用Flowable,但是这次我们需要先看一下同步状态下情况。

    demo13.jpg

    打印日志如下:

    4.jpg

    通过日志我们发现, 通过e.requested()获取到的是一个动态的值,会随着下游已经接收的数据的数量而递减。
    在上面的代码中,我们没有指定上下游的线程,上下游运行在同一线程中。
    这与我们之前提到的,同步状态下不使用Flowable相违背。那是因为异步情况下e.requested()的值太复杂,必须通过同步情况过渡一下才能说得明白。
    我们在上面代码的基础上,给上下游指定独立的线程,代码如下

    demo14.jpg

    运行后日志如下:

    log5.jpg

    虽然我们指定了下游的数据请求量为3,但是我们在上游获取未完成请求数量的时候,并不是3,而是128。难道上游有个最小未完成请求数量?只要下游设置的数据请求量小于128,上游获取到的都是128?
    带着这个疑问,我们试一下当下游的数据请求量为500,大于128时的情况。

    demo15.jpg

    运行日志如下;

    log6.jpg
    结果还是128.
    其实不论下游通过s.request();设置多少请求量,我们在上游获取到的初始未完成请求数量都是128。
    这是为啥呢?
    还记得之前我们说过,Flowable有一个异步缓存池,上游发射的数据,先放到异步缓存池中,再由异步缓存池交给下游。所以上游在发射数据时,首先需要考虑的不是下游的数据请求量,而是缓存池中能不能放得下,否则在缓存池满的情况下依然会导致数据遗失或者背压异常。如果缓存池可以放得下,那就发送,至于是否超出了下游的数据需求量,可以在缓存池向下游传递数据时,再作判断,如果未超出,则将缓存池中的数据传递给下游,如果超出了,则不传递。
    如果下游对数据的需求量超过缓存池的大小,而上游能获取到的最大需求量是128,上游对超出128的需求量是怎么获取到的呢?
    带着这个疑问,我们运行一下,下面的代码,上游发送150个数据,下游也需要150个数据。 demo16.jpg

    截取部分日志如下:

    log7.jpg
    我们发现通过e.requested()获取到的上游当前未完成请求数量并不是一直递减的,在递减到33时,又回升到了128.而回升的时机正好是在下游接收了96条数据之后。我们之前说过,异步缓存池中的数据并不是向下游发射一条便清理一条,而是每等累积到95条时,清理一次。通过e.requested()获取到的值,正是在异步缓存池清理数据时,回升的。也就是,异步缓存池每次清理后,有剩余的空间时,都会导致上游未完成请求数量的回升,这样既不会引发背压异常,也不会导致数据遗失。
    上游在发送数据的时候并不需要考虑下游需不需要,而只需要考虑异步缓存池中是否放得下,放得下便发,放不下便暂停。所以,通过e.requested()获取到的值,并不是下游真正的数据请求数量,而是异步缓存池中可放入数据的数量。数据放入缓存池中后,再由缓存池按照下游的数据请求量向下传递,待到传递完的数据累积到95条之后,将其清除,腾出空间存放新的数据。如果下游处理数据缓慢,则缓存池向下游传递数据的速度也相应变慢,进而没有传递完的数据可清除,也就没有足够的空间存放新的数据,上游通过e.requested()获取的值也就变成了0,如果此时,再发送数据的话,则会根据BackpressureStrategy背压策略的不同,抛出MissingBackpressureException异常,或者丢掉这条数据。
    所以上游只需要在e.requested()等于0时,暂停发射数据,便可解决背压问题。

    最终方案

    下面我们回到最初的问题
    运行下面代码:

    demo17.jpg

    由于下游处理数据的速度(Thread.sleep(50))赶不上上游发射数据的速度,则会导致背压问题。
    运行后查看内存使用如下:

    GIF333.gif

    内存暴增,很快就会OOM
    下面,对其通过Flowable做些改进,让其既不会产生背压问题,也不会引起异常或者数据丢失。
    代码如下:

    demo18.jpg

    下游处理数据的速度Thread.sleep(50)赶不上上游发射数据的速度,
    不同的是,我们在下游onNext(Integer integer) 方法中,每接收一条数据增加一条请求量,

    mSubscription.request(1)
    

    在上游添加代码

    if(e.requested()==0)continue;
    

    让上游按需发送数据。
    运行后查看内存:

    GIF999.gif

    内存一直相当的平静,而且上游严格按照下游的需求量发送数据,不会产生MissingBackpressureException异常,或者丢失数据。
    上一篇:Rxjava2入门教程四:Scheduler线程调度器
    下一篇:Rxjava2入门教程六:Single、Completable、Maybe——简化版的Observable

    相关文章

      网友评论

      • luckbing:写的不错,解惑了我的很多疑问,赞赞赞!!!
      • 提丶米:你好!想请问下;数据流中只有一条数据 是怎么解读的!有点不理解!
      • 看秋叶一片片飘落:写的真好,感谢感谢
      • 小强闯江湖:先mark,用到了再来看看!
      • 19818eadf46b:buffer策略不是没有 128的缓存么,为什么demo15 返回128呢
        afa1332:是我之前写的不够明白,多谢提醒,已对之前写的比较笼统的地方做了更新。在Buffer 策略下,会通过BufferAsyncEmitter类维护一个大小不限的缓存池,会在Flowable默认缓存池满的时候暂存数据,并没有改变Flowable默认缓存池的大小。
      • 张帅_9193:不错 ,思路很清晰
      • Kuma_233:绕晕了。:persevere: :persevere:
      • d5c84fc49f99:监控JVM的插件是什么呀?
        afa1332:Android Studio 自带的Android Profiler,然后用GifCam截取的动图。
      • 西瓜太郎123:这篇文章才是对背压的正确解读!
      • 静静De欧巴:真心不错,是我见过讲背压最好的文章了,赞一个!!:smile:
      • 5018bc4cc740:写得很好,还有demo,完善方案,赞!
      • fozei:大神,收下我的膝盖!谢谢分享,写的非常的赞,非常的清楚。
      • qngzhglgh:写的很不错 基本原理都已经讲明白了
        不过对于range\just..等等这些创建操作符(非create\time\interval的),如果没有叠加策略,也会自动进行等待
      • JakeyYe:感谢分享,写的非常好。分析DROP 这一段中的 “我们可以发现Subscriber在接收完第128条数据后,再次接收的时候已经到了288,而这之间的60条数据正是因为缓存池满了而被丢弃掉了。” 这句话中的 60 应该是 160 吧,博主应该是笔误了。
      • Bo动:继续加油,写的不错
      • fa863734f918:写的不错,赞一个~

      本文标题:Rxjava2入门教程五:Flowable背压支持——几乎可以说

      本文链接:https://www.haomeiwen.com/subject/btfyrxtx.html