概念
贪婪算法(Greedy)的定义:是一种在每一步选中都采取在当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法。
贪婪算法:当下做局部最优判断,不能回退
(能回退的是回溯,最优+回退是动态规划)
由于贪心算法的高效性以及所求得答案比较接近最优结果,贪心算法可以作为辅助算法或解决一些要求
结果不特别精确的问题
注意:当下是最优的,并不一定全局是最优的。举例如下:
image.png
有硬币分值为10、9、4若干枚,问如果组成分值18,最少需要多少枚硬币?
采用贪心算法,选择当下硬币分值最大的:10
18-10=8
8/4=2
即:1个10、2个4,共需要3枚硬币
实际上我们知道,选择分值为9的硬币,2枚就够了
18/9=2
如果改成:
image.png
有硬币分值为10、5、1若干枚,问如果组成分值16,最少需要多少枚硬币?
采用贪心算法,选择当下硬币分值最大的:10
16-10=6
6-5=1
即:1个10,1个5,1个1 ,共需要3枚硬币
即为最优解
由此可以看出贪心算法适合于一些特殊的情况,如果能用一定是最优解
经典问题:部分背包
背包问题是算法的经典问题,分为部分背包和0-1背包,主要区别如下:
部分背包:某件物品是一堆,可以带走其一部分
0-1背包:对于某件物品,要么被带走(选择了它),要么不被带走(没有选择它),不存在只带走一部分的情况。
部分背包问题可以用贪心算法求解,且能够得到最优解。
假设一共有N件物品,第 i 件物品的价值为 Vi ,重量为Wi,一个小偷有一个最多只能装下重量为W的背包,他希望带走的物品越有价值越好,可以带走某件物品的一部分,请问:他应该选择哪些物品?
假设背包可容纳50Kg的重量,物品信息如下表:
image.png
贪心算法的关键是贪心策略的选择
将物品按单位重量 所具有的价值排序。总是优先选择单位重量下价值最大的物品
按照我们的贪心策略,单位重量的价值排序: 物品A > 物品B > 物品C
因此,我们尽可能地多拿物品A,直到将物品1拿完之后,才去拿物品B,然后是物品C 可以只拿一部分.....
package com.david.alth.greedy;
/**
* 贪心算法:部分背包
*/
public class BagDemo1 {
double bag;
public void take(Goods[] goodslist) {
// 对物品按照价值排序从高到低
Goods[] goodslist2 = sort(goodslist);
double sum_w = 0;
//取出价值最高的
for (int i = 0; i < goodslist2.length; i++) {
sum_w += goodslist2[i].weight;
if (sum_w <= bag) {
System.out.println(goodslist2[i].name + "取" + goodslist2[i].weight +"kg");
}else{
System.out.println(goodslist2[i].name + "取" +(bag-(sum_w- goodslist2[i].weight)) +"kg"); return ;
}
}
}
// 按物品的每kg 价值排序 由高到低 price/weight
private Goods[] sort(Goods[] goodslist) {
return goodslist;
}
public static void main(String[] args) {
BagDemo1 bd = new BagDemo1();
Goods goods1 = new Goods("A", 10, 60);
Goods goods2 = new Goods("B", 20, 100);
Goods goods3 = new Goods("C", 30, 120);
Goods[] goodslist = {goods1, goods2, goods3};
bd.bag = 50; bd.take(goodslist);
}
}
public class Goods {
String name;
double weight;
double price;
double val;
public Goods(String name,double weight, double price) {
this.name=name;
this.weight = weight;
this.price = price;
val=price/weight;
}
}
时间复杂度
在不考虑排序的前提下,贪心算法只需要一次循环,所以时间复杂度是O(n)
优缺点
优点:性能高,能用贪心算法解决的往往是最优解
缺点:在实际情况下能用的不多,用贪心算法解的往往不是最好的
适用场景
针对一组数据,我们定义了限制值和期望值,希望从中选出几个数据,在满足限制值的情况下,期望值最大。
每次选择当前情况下,在对限制值同等贡献量的情况下,对期望值贡献最大的数据(局部最优而全局最优)
大部分能用贪心算法解决的问题,贪心算法的正确性都是显而易见的,也不需要严格的数学推导证明
在实际情况下,用贪心算法解决问题的思路,并不总能给出最优解
网友评论