tensorflow动态加载文件

作者: 阿发贝塔伽马 | 来源:发表于2018-05-21 20:52 被阅读63次

如果把文件全部加载到内存中,对大数据量来说,是不可行的,tensorflow使用列队,通过多线程来操作队列进出。举例子来说明>

tf.train.slice_input_producer是一个tensor生成器,作用是按照设定,每次从一个tensor列表中按顺序或者随机抽取出一个tensor放入文件名队列。

下面这个例子是将文件名加入到队列中,每次从列队中只能取出一个tensor,然后读取图片数据,还是频繁io操作,

import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
def get_image(image_path):  
    content = tf.read_file(image_path)
    tf_image = tf.image.decode_jpeg(content, channels=3)
    return tf_image
def plot_pic(batch_img_one_val, batch_img_two_val, label):
    fig = plt.figure(figsize=(6,2))
    plt.suptitle(label)
    ax1 = fig.add_subplot(1,2,1)
    #ax1.set_title(label)
    ax1.imshow(batch_img_one_val)
    ax1.axis('off')
    ax2 = fig.add_subplot(1,2,2)
    ax2.imshow(batch_img_two_val)
    ax2.axis('off')
    plt.show()
    

def slice_input_producer_one_sample():
    # 重置graph
    tf.reset_default_graph()
    batch_size = 1
    images_one_path_list = ['lda.png', 'snapshot.png','hua.jpeg']
    images_two_path_list = ['tuzi.jpg', 'test.png', 'hua.jpeg']
    label_list = ['lad_tuzi', 'snap_test', 'hua']
    
    # 构造数据queue
    # capacity队列的大小,本例子中一个队列元素是['lda.png','tuzi.jpg','lad_tuzi],理解slice切片功能
    train_input_queue = tf.train.slice_input_producer(
        [images_one_path_list, images_two_path_list,label_list], 
          capacity= 1*batch_size, shuffle=False)
    
    # queue输出数据
    img_one_queue = get_image(train_input_queue[0])
    img_two_queue = get_image(train_input_queue[1])
    label_queue = train_input_queue[2]

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    # 启动queue线程
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    for i in range(10):
        batch_img_one_val, batch_img_two_val, label= sess.run(
            [img_one_queue, img_two_queue,label_queue])

        plot_pic(batch_img_one_val, batch_img_two_val, label)

    coord.request_stop()  
    coord.join(threads)  
    sess.close()
slice_input_producer_one_sample()

第一个



第二个



等等。。注意每次读取两个图片一个label与输入list的对应关系

现在把读取的图片内存加入到新列队中
使用tf.train.shuffle_batch
取两次图片,每次取三个,这样程序就从列队中取出已经加载好的图片内存数据

import matplotlib.pyplot as plt
def conver_image_size(img,hsize, wsize):
    img = tf.image.convert_image_dtype(img, dtype=tf.float32)  
    img = tf.image.resize_images(img, [hsize, wsize])
    return img


def slice_input_producer_demo():
    # 重置graph
    tf.reset_default_graph()
    # 获取图片系统路径,标签信息
    batch_size = 3
    hsize = 377
    wsize = 500
 
    images_one_path_list = ['lda.png', 'snapshot.png','hua.jpeg']
    images_two_path_list = ['tuzi.jpg', 'test.png', 'hua.jpeg']
    label_list = ['lad_tuzi', 'snap_test', 'hua']
    
    # 构造数据queue
    train_input_queue = tf.train.slice_input_producer(
        [images_one_path_list, images_two_path_list,label_list], 
          capacity= 3, shuffle=False)
    
    # queue输出数据
    img_one_queue = get_image(train_input_queue[0])
    img_two_queue = get_image(train_input_queue[1])
    label_queue = train_input_queue[2]
    # shuffle_batch 批量从queue批量读取数据

    img_one_queue = conver_image_size(img_one_queue, hsize, wsize)
    img_two_queue = conver_image_size(img_two_queue, hsize, wsize)
    
    batch_img_one, batch_img_two, batch_label = tf.train.shuffle_batch(
             [img_one_queue, img_two_queue, label_queue],
              batch_size=batch_size,
              capacity =  10 + 10* batch_size,
              min_after_dequeue = 10,
              num_threads=16)
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    
    # 启动queue线程
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    
    for i in range(2):
        batch_img_one_val, batch_img_two_val, label= sess.run(
            [batch_img_one, batch_img_two,batch_label])
        print label
        fig = plt.figure(figsize=(4,6))
        for k in range(batch_size):
            ax1 = fig.add_subplot(batch_size,2,2*k+1)
            ax1.set_title(label[k])
            plt.imshow(batch_img_one_val[k])
            ax2 = fig.add_subplot(batch_size,2,2*k+2)
            ax2.set_title(label[k])
            ax2.imshow(batch_img_two_val[k])
        plt.show()
    coord.request_stop()  
    coord.join(threads)  
    sess.close()
第一次
第二次

string_input_producer加载序列

def string_input_producter_demo():
    tf.reset_default_graph()
    images_one_path_list = ['lda.png', 'snapshot.png','hua.jpeg']
    images_two_path_list = ['tuzi.jpg', 'test.png', 'hua.jpeg']
    label_list = ['lad_tuzi', 'snap_test', 'hua']
    batch_size = 2
    hsize = 377
    wsize = 500
    # 构造数据queue
    train_input_queue = tf.train.string_input_producer(
        images_one_path_list, capacity=10*batch_size)
    
    #queue输出数据
    img_one_queue = get_image(train_input_queue.dequeue())
    
    img_one_queue = conver_image_size(img_one_queue, hsize, wsize)
    # 将图片数据加载到新的队列
    batch_img_one = tf.train.shuffle_batch(
             [img_one_queue],
              batch_size=batch_size,
              capacity =  10 + 10* batch_size,
              min_after_dequeue = 10,
              num_threads=16)
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    
    for i in range(2):
        for k in range(batch_size):
            img_one_val = sess.run(batch_img_one[k])
            fig = plt.figure()
            plt.imshow(img_one_val)
            plt.show()
    coord.request_stop()
    coord.join(threads)
    sess.close()
string_input_producter_demo()

加载CSV文件

A.csv文件如下
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()

batch_size = 2
filenames = ['A.csv', 'B.csv', 'C.csv']

filename_queue = tf.train.string_input_producer(
        filenames, shuffle=False)
# 定义Reader
reader = tf.TextLineReader()
key,value = reader.read(filename_queue)

# 定义Decoder
example, label = tf.decode_csv(
    value, record_defaults = [['null'], ['null']])
batch_data,label_data = tf.train.shuffle_batch(
             [example, label],
              batch_size=batch_size,
              capacity =  10 + 10* batch_size,
              min_after_dequeue = 10,
              num_threads=16)

with tf.Session() as sess:
    # 创建一个协调器,管理线程    
    coord = tf.train.Coordinator()
    # 启动QueueRunner,此时文件数据列队已经进队
    threads = tf.train.start_queue_runners(coord=coord)
    sess.run(tf.global_variables_initializer())

    for i in range(9):
        batch_, label_ = sess.run([batch_data, label_data])
        print batch_
        print label_
        print '-----'
    coord.request_stop()
    coord.join(threads)

每次从列队中加载两个数据


参考
Tensorflow 数据预读取--Queue

相关文章

  • tensorflow动态加载文件

    如果把文件全部加载到内存中,对大数据量来说,是不可行的,tensorflow使用列队,通过多线程来操作队列进出。举...

  • PHP页面静态化01

    动态页面与静态页面 动态页面:首先加载动态文件,将动态文件中的内容,如php文件, asp文件等 静态页面:静态的...

  • 6.动态加载

    对动态库的加载分为自动加载和动态加载两种1.1 动态加载:程序的执行期间,需要使用到某个动态库中的文件的时候,可以...

  • 异步加载JS时的加载顺序问题

    通过document.createElement('script')方式加载JS文件时,文件是动态加载进来的,没法...

  • 动态加载

    定义 加载so文件 加载dex/jar/apk文件 动态加载的基础就是classloader,一个app中至少需要...

  • HBase协处理器加载的三种方式

    本文主要给大家罗列了HBase协处理器加载的三种方式:Shell加载(动态)、Api加载(动态)、配置文件加载(静...

  • tensorflow模型部署总结

    部署方式 1、tf-serving 2、pb文件模型加载 tensorflow java接口直接调用pb模型文件进...

  • 代码分割

    代码分割:当两个文件同时引用同一个模块时时,将其抽取出来官方例子 懒加载(动态加载):通过某个条件动态加载js文件...

  • iOS 动态加载类方法 实例方法

    工作中生成的静态库程序中为了避免必须要导入头文件,很多时候需要动态加载,减少导入头文件的累赘,动态加载类方法和动态...

  • IOC大致介绍

    IOC 原理 动态加载对象实例,动态装配; IOC xml版本 原理 容器启动阶段: 1、加载配置文件信息;——依...

网友评论

本文标题:tensorflow动态加载文件

本文链接:https://www.haomeiwen.com/subject/cebqjftx.html