Finite Difference Methods for Solving PDEs
有限差分法求解偏微分方程
PDE具有封闭解是非常罕见,通常只能用数值解。
将重点放在有限差分法(FDM)上:其他数值方法存在可能更合适 - 具体在于实际问题。
Discretization
-
使用FDM求解偏微分方程的第一步是将u(x,t)u(x,t)解作为离散的值集合,在空间和时间的网格点上,坐标上,的分布。 First step in solving PDEs using FDM is to represent the solution u(x,t)u(x,t) as a discrete collection of values at a well distributed grid points in space and time in the proper domain.
-
然后是设计步长:
![](https://img.haomeiwen.com/i7086733/8b1191f6f389f0c1.png)
-
任何其他所需点的值可以通过插值来近似。
-
A uniform mesh may not necessary be the most efficient form to work with, in fact, it rarely is. 一个统一的网格很少说是最有效的形式。
-
A greatly simplified rule-of-thumb: the mesh needs to be refined around the region where the function varies a lot 网格需要在功能变化很大的区域进行细化
On the other hand, the mesh can be relatively coarse if the function is smooth and changing slowly 如果功能平滑并且变化缓慢,则网格可能相对较粗糙 -
In finance, the time grid is well advised to keep the important dates as grid points: such as cash flow dates, contractual schedule dates, etc. The spacing of these dates is most likely not uniform. 在金融方面,建议时间网格将重要日期保留为网格点,例如现金流量日期,contractual schedule dates等。这些日期的间隔很可能不统一。
Finite Difference Methods(FDM)
Toolkit for finite difference approximation
![](https://img.haomeiwen.com/i7086733/899772ec09fc823e.png)
The Explicit Method
For convenience, reverse the time for Black-Scholes notation: t←T−t
![](https://img.haomeiwen.com/i7086733/0cf35e68bf82ffdb.png)
比较原始:
![](https://img.haomeiwen.com/i7086733/74181bcfabe3ae8d.png)
套用一个
![](https://img.haomeiwen.com/i7086733/75f2e3c80a4eca1f.png)
网友评论